Depth-Aware Video Frame Interpolation (CVPR 2019)

Related tags

Deep LearningDAIN
Overview

DAIN (Depth-Aware Video Frame Interpolation)

Project | Paper

Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang

IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CVPR 2019

This work is developed based on our TPAMI work MEMC-Net, where we propose the adaptive warping layer. Please also consider referring to it.

Table of Contents

  1. Introduction
  2. Citation
  3. Requirements and Dependencies
  4. Installation
  5. Testing Pre-trained Models
  6. Downloading Results
  7. Slow-motion Generation
  8. Training New Models
  9. Google Colab Demo

Introduction

We propose the Depth-Aware video frame INterpolation (DAIN) model to explicitly detect the occlusion by exploring the depth cue. We develop a depth-aware flow projection layer to synthesize intermediate flows that preferably sample closer objects than farther ones. Our method achieves state-of-the-art performance on the Middlebury dataset. We provide videos here.

Citation

If you find the code and datasets useful in your research, please cite:

@inproceedings{DAIN,
    author    = {Bao, Wenbo and Lai, Wei-Sheng and Ma, Chao and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan}, 
    title     = {Depth-Aware Video Frame Interpolation}, 
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
    year      = {2019}
}
@article{MEMC-Net,
     title={MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement},
     author={Bao, Wenbo and Lai, Wei-Sheng, and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-Hsuan},
     journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
     doi={10.1109/TPAMI.2019.2941941},
     year={2018}
}

Requirements and Dependencies

  • Ubuntu (We test with Ubuntu = 16.04.5 LTS)
  • Python (We test with Python = 3.6.8 in Anaconda3 = 4.1.1)
  • Cuda & Cudnn (We test with Cuda = 9.0 and Cudnn = 7.0)
  • PyTorch (The customized depth-aware flow projection and other layers require ATen API in PyTorch = 1.0.0)
  • GCC (Compiling PyTorch 1.0.0 extension files (.c/.cu) requires gcc = 4.9.1 and nvcc = 9.0 compilers)
  • NVIDIA GPU (We use Titan X (Pascal) with compute = 6.1, but we support compute_50/52/60/61 devices, should you have devices with higher compute capability, please revise this)

Installation

Download repository:

$ git clone https://github.com/baowenbo/DAIN.git

Before building Pytorch extensions, be sure you have pytorch >= 1.0.0:

$ python -c "import torch; print(torch.__version__)"

Generate our PyTorch extensions:

$ cd DAIN
$ cd my_package 
$ ./build.sh

Generate the Correlation package required by PWCNet:

$ cd ../PWCNet/correlation_package_pytorch1_0
$ ./build.sh

Testing Pre-trained Models

Make model weights dir and Middlebury dataset dir:

$ cd DAIN
$ mkdir model_weights
$ mkdir MiddleBurySet

Download pretrained models,

$ cd model_weights
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best.pth

and Middlebury dataset:

$ cd ../MiddleBurySet
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-color-allframes.zip
$ unzip other-color-allframes.zip
$ wget http://vision.middlebury.edu/flow/data/comp/zip/other-gt-interp.zip
$ unzip other-gt-interp.zip
$ cd ..

preinstallations:

$ cd PWCNet/correlation_package_pytorch1_0
$ sh build.sh
$ cd ../my_package
$ sh build.sh
$ cd ..

We are good to go by:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py

The interpolated results are under MiddleBurySet/other-result-author/[random number]/, where the random number is used to distinguish different runnings.

Downloading Results

Our DAIN model achieves the state-of-the-art performance on the UCF101, Vimeo90K, and Middlebury (eval and other). Download our interpolated results with:

$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/UCF101_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Vimeo90K_interp_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_eval_DAIN.zip
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/Middlebury_other_DAIN.zip

Slow-motion Generation

Our model is fully capable of generating slow-motion effect with minor modification on the network architecture. Run the following code by specifying time_step = 0.25 to generate x4 slow-motion effect:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.25

or set time_step to 0.125 or 0.1 as follows

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.125
$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.1

to generate x8 and x10 slow-motion respectively. Or if you would like to have x100 slow-motion for a little fun.

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py --netName DAIN_slowmotion --time_step 0.01

You may also want to create gif animations by:

$ cd MiddleBurySet/other-result-author/[random number]/Beanbags
$ convert -delay 1 *.png -loop 0 Beanbags.gif //1*10ms delay 

Have fun and enjoy yourself!

Training New Models

Download the Vimeo90K triplet dataset for video frame interpolation task, also see here by Xue et al., IJCV19.

$ cd DAIN
$ mkdir /path/to/your/dataset & cd /path/to/your/dataset 
$ wget http://data.csail.mit.edu/tofu/dataset/vimeo_triplet.zip
$ unzip vimeo_triplet.zip
$ rm vimeo_triplet.zip

Download the pretrained MegaDepth and PWCNet models

$ cd MegaDepth/checkpoints/test_local
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best_generalization_net_G.pth
$ cd ../../../PWCNet
$ wget http://vllab1.ucmerced.edu/~wenbobao/DAIN/pwc_net.pth.tar
$ cd  ..

Run the training script:

$ CUDA_VISIBLE_DEVICES=0 python train.py --datasetPath /path/to/your/dataset --batch_size 1 --save_which 1 --lr 0.0005 --rectify_lr 0.0005 --flow_lr_coe 0.01 --occ_lr_coe 0.0 --filter_lr_coe 1.0 --ctx_lr_coe 1.0 --alpha 0.0 1.0 --patience 4 --factor 0.2

The optimized models will be saved to the model_weights/[random number] directory, where [random number] is generated for different runs.

Replace the pre-trained model_weights/best.pth model with the newly trained model_weights/[random number]/best.pth model. Then test the new model by executing:

$ CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury.py

Google Colab Demo

This is a modification of DAIN that allows the usage of Google Colab and is able to do a full demo interpolation from a source video to a target video.

Original Notebook File by btahir can be found here.

To use the Colab, follow these steps:

  • Download the Colab_DAIN.ipynb file (link).
  • Visit Google Colaboratory (link)
  • Select the "Upload" option, and upload the .ipynb file
  • Start running the cells one by one, following the instructions.

Colab file authors: Styler00Dollar and Alpha.

Contact

Wenbo Bao; Wei-Sheng (Jason) Lai

License

See MIT License

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023