Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

Overview

DeT and DOT

Code and datasets for

  1. "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021)
  2. "Depth-only Object Tracking" (BMVC2021)
@InProceedings{yan2021det,
    author    = {Yan, Song and Yang, Jinyu and Kapyla, Jani and Zheng, Feng and Leonardis, Ales and Kamarainen, Joni-Kristian},
    title     = {DepthTrack: Unveiling the Power of RGBD Tracking},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {10725-10733}
}

@InProceedings{yan2021dot,
  title       = {Depth-only Object Tracking},
  author      = {Yan, Song and Yang, Jinyu and Leonardis, Ales and Kamarainen, Joni-Kristian},
  booktitle   = {Procedings of the British Machine Vision Conference (BMVC)},
  year        = {2021},
  organization= {British Machine Vision Association}
}

The settings are same as that of Pytracking, please read the document of Pytracking for details.

Generated Depth

We highly recommend to generate high quality depth data from the existing RGB tracking benchmarks, such as LaSOT, Got10K, TrackingNet, and COCO.

We show the examples of generated depth here. The first row is the results from HighResDepth for LaSOT RGB images, the second and the third are from DenseDepth for Got10K and COCO RGB images, the forth row is for the failure cases in which the targets are too close to the background or floor. The last row is from DenseDepth for CDTB RGB images.

Examples of generated depth images

In our paper, we used the DenseDepth monocular depth estimation method. We calculate the Ordinal Error (ORD) on the generated depth for CDTB and our DepthTrack test set, and the mean ORD is about 0.386, which is sufficient for training D or RGBD trackers and we have tested it in our works.

And we also tried the recently HighResDepth from CVPR2021, which also performs very well.

@article{alhashim2018high,
  title={High quality monocular depth estimation via transfer learning},
  author={Alhashim, Ibraheem and Wonka, Peter},
  journal={arXiv preprint arXiv:1812.11941},
  year={2018}
}

@inproceedings{miangoleh2021boosting,
  title={Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging},
  author={Miangoleh, S Mahdi H and Dille, Sebastian and Mai, Long and Paris, Sylvain and Aksoy, Yagiz},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9685--9694},
  year={2021}
}

We will public the generated depth maps one by one.

Generated Depth maps for LaSOT

We manually remove bad sequences, and here are totally 646 sequences (some zip files may be broken, will be updated soon) used the DenseDepth method. Original DenseDepth outputs are in range [0, 1.0], we multiply 2^16. Please check LaSOT for RGB images and groundtruth.

part01, part02, part03, part04, part05, part06, part07, part08, part09, part10

The generated depth maps by using HighResDepth will be uploaded soon.

If you find some excellent methods to generate high quality depth images, please share it.

Architecture

Actually the network architecture is very simple, just adding one ResNet50 feature extractor for Depth input and then merging the RGB and Depth feature maps. Below figures are

  1. the feature maps for RGB, D inputs and the merged RGBD ones,
  2. the network for RGBD DiMP50, and
  3. RGBD ATOM.

The feature maps for RGB, D and the merged RGBD The network for RGB+D DiMP50 The network for RGB+D ATOM

Download

  1. Download the training dataset(70 sequences) of VOT2021RGBD Challenge from Zenodo (DepthTrack RGBD Tracking Benchmark) and edit the path in local.py More data will be uploaded soon, we hope to bring a large scale RGBD training dataset.
http://doi.org/10.5281/zenodo.4716441
  1. Download the checkpoints for DeT trackers (in install.sh)
gdown https://drive.google.com/uc\?id\=1djSx6YIRmuy3WFjt9k9ZfI8q343I7Y75 -O pytracking/networks/DeT_DiMP50_Max.pth
gdown https://drive.google.com/uc\?id\=1JW3NnmFhX3ZnEaS3naUA05UaxFz6DLFW -O pytracking/networks/DeT_DiMP50_Mean.pth
gdown https://drive.google.com/uc\?id\=1wcGJc1Xq_7d-y-1nWh6M7RaBC1AixRTu -O pytracking/networks/DeT_DiMP50_MC.pth
gdown https://drive.google.com/uc\?id\=17IIroLZ0M_ZVuxkGN6pVy4brTpicMrn8 -O pytracking/networks/DeT_DiMP50_DO.pth
gdown https://drive.google.com/uc\?id\=17aaOiQW-zRCCqPePLQ9u1s466qCtk7Lh -O pytracking/networks/DeT_ATOM_Max.pth
gdown https://drive.google.com/uc\?id\=15LqCjNelRx-pOXAwVd1xwiQsirmiSLmK -O pytracking/networks/DeT_ATOM_Mean.pth
gdown https://drive.google.com/uc\?id\=14wyUaG-pOUu4Y2MPzZZ6_vvtCuxjfYPg -O pytracking/networks/DeT_ATOM_MC.pth

Install

bash install.sh path-to-anaconda DeT

Train

Using the default DiMP50 or ATOM pretrained checkpoints can reduce the training time.

For example, move the default dimp50.pth into the checkpoints folder and rename as DiMPNet_Det_EP0050.pth.tar

python run_training.py bbreg DeT_ATOM_Max
python run_training.py bbreg DeT_ATOM_Mean
python run_training.py bbreg DeT_ATOM_MC

python run_training.py dimp DeT_DiMP50_Max
python run_training.py dimp DeT_DiMP50_Mean
python run_training.py dimp DeT_DiMP50_MC

Test

python run_tracker.py atom DeT_ATOM_Max --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py atom DeT_ATOM_Mean --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py atom DeT_ATOM_MC --dataset_name depthtrack --input_dtype rgbcolormap

python run_tracker.py dimp DeT_DiMP50_Max --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py dimp DeT_DiMP50_Mean --dataset_name depthtrack --input_dtype rgbcolormap
python run_tracker.py dimp DeT_DiMP50_MC --dataset_name depthtrack --input_dtype rgbcolormap


python run_tracker.py dimp dimp50 --dataset_name depthtrack --input_dtype color
python run_tracker.py atom default --dataset_name depthtrack --input_dtype color

Owner
Yan Song
RGBD tracking, Computerized Anthropometry, 3D Human Body Shape Reconstruction
Yan Song
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
CrossMLP - The repository offers the official implementation of our BMVC 2021 paper (oral) in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022