Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Overview

Auto-Tuned Sim-to-Real Transfer

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer. The paper will be released shortly on arXiv.

This repository was forked from the CURL codebase.

Installation

Install mujoco, if it is not already installed.

Add this to bashrc:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/olivia/.mujoco/mujoco200/bin

Apt-install these packages:

sudo apt-get install libosmesa6-dev
sudo apt-get install patchelf

All of the dependencies are in the conda_env.yml file. They can be installed manually or with the following command:

conda env create -f conda_env.yml

Enter the environments directory and run

pip install -e .

Instructions

Here is an example experiment run command.

CUDA_VISIBLE_DEVICES=0 python train.py --gpudevice 0 --id S3000 --outer_loop_version 3 --dr --start_outer_loop 5000 --train_sim_param_every 1 --prop_alpha --update_sim_param_from both --alpha 0.1 --mean_scale 1.75 --train_range_scale .5 --domain_name dmc_ball_in_cup --task_name catch --action_repeat 4 --range_scale .5 --scale_large_and_small --dr_option simple_dr --save_tb --use_img --encoder_type pixel --num_eval_episodes 1 --seed 1 --num_train_steps 1000000 --encoder_feature_dim 64 --num_layers 4 --num_filters 32 --sim_param_layers 2 --sim_param_units 400 --sim_param_lr .001 --prop_range_scale --prop_train_range_scale --separate_trunks --num_sim_param_updates 3 --save_video --eval_freq 2000 --num_eval_episodes 3 --save_model --save_buffer --no_train_policy
--outer_loop_version refers to the method by which we update simulation parameters. 1 means we update with regression, and 3 means binary classifier.
--scale_large_and_small means that half of the mean values in our simulation randomization will be randomly chosen to be too large, and the other half will be too small. If this flag is not provided, they will all be too large.
--mean_scale refers to the mean of the simulator distribution. A mean of k means that all simulation parameters are k times or 1/k times the true mean (randomly chosen for each param).
--range_scale refers to the range of the uniform distribution we use to collect samples to train the policy.
--train_range_scale refers to the range of the uniform distribution we use to collect samples to train the Search Param Model. This value is typically set >= to --range_scale.
--prop_range_scale and --prop_train_range_scale make the distribution ranges a scale multiple of the mean value rather than constants.

Check train.py for a full list of run commands.

During training, in your console, you should see printouts that look like:

| train | E: 221 | S: 28000 | D: 18.1 s | R: 785.2634 | BR: 3.8815 | A_LOSS: -305.7328 | CR_LOSS: 190.9854 | CU_LOSS: 0.0000
| train | E: 225 | S: 28500 | D: 18.6 s | R: 832.4937 | BR: 3.9644 | A_LOSS: -308.7789 | CR_LOSS: 126.0638 | CU_LOSS: 0.0000
| train | E: 229 | S: 29000 | D: 18.8 s | R: 683.6702 | BR: 3.7384 | A_LOSS: -311.3941 | CR_LOSS: 140.2573 | CU_LOSS: 0.0000
| train | E: 233 | S: 29500 | D: 19.6 s | R: 838.0947 | BR: 3.7254 | A_LOSS: -316.9415 | CR_LOSS: 136.5304 | CU_LOSS: 0.0000

Log abbreviation mapping:

train - training episode
E - total number of episodes 
S - total number of environment steps
D - duration in seconds to train 1 episode
R - mean episode reward
BR - average reward of sampled batch
A_LOSS - average loss of actor
CR_LOSS - average loss of critic
CU_LOSS - average loss of the CURL encoder

All data related to the run is stored in the specified working_dir. To enable model or video saving, use the --save_model or --save_video flags. For all available flags, inspect train.py. To visualize progress with tensorboard run:

tensorboard --logdir log --port 6006

and go to localhost:6006 in your browser. If you're running headlessly, try port forwarding with ssh.

For GPU accelerated rendering, make sure EGL is installed on your machine and set export MUJOCO_GL=egl. For environment troubleshooting issues, see the DeepMind control documentation.

Debugging common installation errors

Error message ERROR: GLEW initalization error: Missing GL version

  • Make sure /usr/lib/x86_64-linux-gnu/libGLEW.so and /usr/lib/x86_64-linux-gnu/libGL.so exist. If not, apt-install them.
  • Try trying adding the powerset of those two paths to LD_PRELOAD.

Error Shadow framebuffer is not complete, error 0x8cd7

  • Like above, make sure libglew and libGL are installed.
  • If /usr/lib/nvidia exists but '/usr/lib/nvidia-430/(or some other number) does not exist, runln -s /usr/lib/nvidia /usr/lib/nvidia-430`. It may have to match the number of your nvidia driver, I'm not sure.
  • Consider adding that symlink to LD_LIBRARY PATH.
  • If /usr/lib/nvidia doesn't exist, and neither does /usr/lib/nvidia-xxx, then create the folder /usr/lib/nvidia /usr/lib/nvidia-430.

Error message `RuntimeError: Failed to initialize OpenGL:

  • Make sure MUJOCO_GL is correct (egl for DMC, osmesa for anything else).
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022