Official implementation of EfficientPose

Overview

EfficientPose

This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet which again builds up on the great Keras RetinaNet implementation fizyr/keras-retinanet, the official EfficientDet implementation google/automl and qubvel/efficientnet.

image1

Installation

  1. Clone this repository
  2. Create a new environment with conda create -n EfficientPose python==3.6
  3. Activate that environment with conda activate EfficientPose
  4. Install Tensorflow 1.15.0 with conda install tensorflow-gpu==1.15.0
  5. Go to the repo dir and install the other dependencys using pip install -r requirements.txt
  6. Compile cython modules with python setup.py build_ext --inplace

Dataset and pretrained weights

You can download the Linemod and Occlusion datasets and the pretrained weights from here. Just unzip the Linemod_and_Occlusion.zip file and you can train or evaluate using these datasets as described below.

The dataset is originally downloaded from j96w/DenseFusion as well as chensong1995/HybridPose and were preprocessed using the generate_masks.py script. The EfficientDet COCO pretrained weights are from xuannianz/EfficientDet.

Training

Linemod

To train a phi = 0 EfficientPose model on object 8 of Linemod (driller) using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To train a phi = 0 EfficientPose model on Occlusion using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 occlusion /path_to_dataset/Linemod_preprocessed/

See train.py for more arguments.

Evaluating

Linemod

To evaluate a trained phi = 0 EfficientPose model on object 8 of Linemod (driller) and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To evaluate a trained phi = 0 EfficientPose model on Occlusion and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ occlusion /path_to_dataset/Linemod_preprocessed/

If you don`t want to save the predicted images just skip the --validation-image-save-path argument.

Inferencing

We also provide two basic scripts demonstrating the exemplary use of a trained EfficientPose model for inferencing. With python inference.py you can run EfficientPose on all images in a directory. The needed parameters, e.g. the path to the images and the model can be modified in the inference.py script.

With python inference_webcam.py you can run EfficientPose live with your webcam. Please note that you have to replace the intrinsic camera parameters used in this script (Linemod) with your webcam parameters. Since the Linemod and Occlusion datasets are too small to expect a reasonable 6D pose estimation performance in the real world and a lot of people probably do not have the exact same objects used in Linemod (like me), you can try to display a Linemod image on your screen and film it with your webcam.

Benchmark

To measure the runtime of EfficientPose on your machine you can use python benchmark_runtime.py. The needed parameters, e.g. the path to the model can be modified in the benchmark_runtime.py script. Similarly, you can also measure the vanilla EfficientDet runtime on your machine with the benchmark_runtime_vanilla_effdet.py script.

Debugging Dataset and Generator

If you want to modify the generators or build a new custom dataset, it can be very helpful to display the dataset annotations loaded from your generator to make sure everything works as expected. With

python debug.py --phi 0 --annotations linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

you can display the loaded and augmented image as well as annotations prepared for a phi = 0 model from object 8 of the Linemod dataset. Please see debug.py for more arguments.

Citation

Please cite EfficientPose if you use it in your research

@misc{bukschat2020efficientpose,
      title={EfficientPose: An efficient, accurate and scalable end-to-end 6D multi object pose estimation approach}, 
      author={Yannick Bukschat and Marcus Vetter},
      year={2020},
      eprint={2011.04307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

EfficientPose is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license and is freely available for non-commercial use. Please see the LICENSE for further details. If you are interested in commercial use, please contact us under [email protected] or [email protected].

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022