Official implementation of EfficientPose

Overview

EfficientPose

This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet which again builds up on the great Keras RetinaNet implementation fizyr/keras-retinanet, the official EfficientDet implementation google/automl and qubvel/efficientnet.

image1

Installation

  1. Clone this repository
  2. Create a new environment with conda create -n EfficientPose python==3.6
  3. Activate that environment with conda activate EfficientPose
  4. Install Tensorflow 1.15.0 with conda install tensorflow-gpu==1.15.0
  5. Go to the repo dir and install the other dependencys using pip install -r requirements.txt
  6. Compile cython modules with python setup.py build_ext --inplace

Dataset and pretrained weights

You can download the Linemod and Occlusion datasets and the pretrained weights from here. Just unzip the Linemod_and_Occlusion.zip file and you can train or evaluate using these datasets as described below.

The dataset is originally downloaded from j96w/DenseFusion as well as chensong1995/HybridPose and were preprocessed using the generate_masks.py script. The EfficientDet COCO pretrained weights are from xuannianz/EfficientDet.

Training

Linemod

To train a phi = 0 EfficientPose model on object 8 of Linemod (driller) using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To train a phi = 0 EfficientPose model on Occlusion using COCO pretrained weights:

python train.py --phi 0 --weights /path_to_weights/file.h5 occlusion /path_to_dataset/Linemod_preprocessed/

See train.py for more arguments.

Evaluating

Linemod

To evaluate a trained phi = 0 EfficientPose model on object 8 of Linemod (driller) and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

Occlusion

To evaluate a trained phi = 0 EfficientPose model on Occlusion and (optionally) save the predicted images:

python evaluate.py --phi 0 --weights /path_to_weights/file.h5 --validation-image-save-path /where_to_save_predicted_images/ occlusion /path_to_dataset/Linemod_preprocessed/

If you don`t want to save the predicted images just skip the --validation-image-save-path argument.

Inferencing

We also provide two basic scripts demonstrating the exemplary use of a trained EfficientPose model for inferencing. With python inference.py you can run EfficientPose on all images in a directory. The needed parameters, e.g. the path to the images and the model can be modified in the inference.py script.

With python inference_webcam.py you can run EfficientPose live with your webcam. Please note that you have to replace the intrinsic camera parameters used in this script (Linemod) with your webcam parameters. Since the Linemod and Occlusion datasets are too small to expect a reasonable 6D pose estimation performance in the real world and a lot of people probably do not have the exact same objects used in Linemod (like me), you can try to display a Linemod image on your screen and film it with your webcam.

Benchmark

To measure the runtime of EfficientPose on your machine you can use python benchmark_runtime.py. The needed parameters, e.g. the path to the model can be modified in the benchmark_runtime.py script. Similarly, you can also measure the vanilla EfficientDet runtime on your machine with the benchmark_runtime_vanilla_effdet.py script.

Debugging Dataset and Generator

If you want to modify the generators or build a new custom dataset, it can be very helpful to display the dataset annotations loaded from your generator to make sure everything works as expected. With

python debug.py --phi 0 --annotations linemod /path_to_dataset/Linemod_preprocessed/ --object-id 8

you can display the loaded and augmented image as well as annotations prepared for a phi = 0 model from object 8 of the Linemod dataset. Please see debug.py for more arguments.

Citation

Please cite EfficientPose if you use it in your research

@misc{bukschat2020efficientpose,
      title={EfficientPose: An efficient, accurate and scalable end-to-end 6D multi object pose estimation approach}, 
      author={Yannick Bukschat and Marcus Vetter},
      year={2020},
      eprint={2011.04307},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

EfficientPose is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license and is freely available for non-commercial use. Please see the LICENSE for further details. If you are interested in commercial use, please contact us under [email protected] or [email protected].

💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022