Gym Threat Defense

Overview

Gym Threat Defense

The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Policies for Partially Observable Spreading Processes on Bayesian Attack Graphs by Miehling, E., Rasouli, M., & Teneketzis, D. (2015). It constitutes a 29-state/observation, 4-action POMDP defense problem.

The environment

The Threat Defense environment

Above, the Threat Defense environment can be observed. None of the notations or the definitions made in the paper will be explained in the text that follows, but rather the benchmark of the toy example will be stated. If these are desired, follow the link found earlier to the paper of Miehling, E., Rasouli, M., & Teneketzis, D. (2015).

Attributes

Of the 12 attributes that the toy example is built up by, two are leaf attributes (1 and 5) and one is a critical attribute (12). To give the network a more realistic appearance, the 12 attributes are intepreted in the paper as:

  1. Vulnerability in WebDAV on machine 1
  2. User access on machine 1
  3. Heap corruption via SSH on machine 1
  4. Root access on machine 1
  5. Buffer overflow on machine 2
  6. Root access on machine 2
  7. Squid portscan on machine 2
  8. Network topology leakage from machine 2
  9. Buffer overflow on machine 3
  10. Root access on machine 3
  11. Buffer overflow on machine 4
  12. Root access on machine 4

Actions

The defender have access to the two following binary actions:

  • u_1: Block WebDAV service
  • u_2: Disconnect machine 2

Thus we have four countermeasures to apply, i.e U = {none, u_1, u_2, u_1 & u_2}.

Cost Function

The cost function is defined as C(x,u) = C(x) + D(u).

C(x) is the state cost, and is 1 if the state, that is x, is a critical attribute. Otherwise it is 0.

D(u) is the availability cost of a countermeasure u, and is 0 if the countermeasure is none, 1 if it is u_1 or u_2 and 5 if it is both u_1 and u_2.

Parameters

The parameters of the problem are:

# The probabilities of detection:
beta = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.7, 0.6, 0.7, 0.85, 0.95]

# The attack probabilities:
alpha_1, alpha_5 = 0.5

# The spread probabilities:
alpha_(1,2), alpha_(2,3), alpha_(4,9), alpha_(5,6), alpha_(7,8), alpha_(8,9), alpha_(8,11), alpha_(10,11) = 0.8

alpha_(3,4), alpha_(6,7), alpha_(9,10), alpha_(11,12) = 0.9

# The discount factor:
gamma = 0.85

# The initial belief vector
pi_0 = [1,0,...,0]

Dependencies

  • OpenAI Gym
  • Numpy

Installation

cd gym-threat-defense
pip install -e .

Rendering

There are two possible rendering alternatives when running the environment. These are:

  • Render to stdout
  • A visual mode which prints the graph and indicate which nodes the attacker has taken over

To do a visual rendering, pass in 'rgb_array' to the render function.

env.render('rgb_array')

GUI rendering

Otherwise, for an ASCII representation to stdout, pass in 'human'.

env.render('human')

Example of the printing, where we can see that the agent took the block and disconnect action. The attacker has enabled five attributes, i.e. nodes, represented by ones, where the non-enabled attributes are represented by zeros. A node with parentheses is a leaf node, also known as an entry-point, a square bracket is a normal non-leaf node and a double bracketed node is a critical node.

Action: Block WebDAV service and Disconnect machine 2
(1) --> [1] --> [0] --> [0]
		      \--> [0] <-- [0] <-- [1] <-- [1] <-- (1)
			   \--> [0] <---/
				  \--> [0] --> [[0]]

By default the mode is set to printing to stdout.

Example

As an example on how to use the Threat Defense environment, we provide a couple of algorithms that uses both configurations of the environment. Read the README in the examples/ directory for more information on which algorithm works with which.

Template

How to create new environments for Gym

Inspiration

banana-gym

gym-soccer

gym-pomdp

Authors

Owner
Hampus Ramström
Hampus Ramström
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022