CondNet: Conditional Classifier for Scene Segmentation

Related tags

Deep LearningCondNet
Overview

CondNet: Conditional Classifier for Scene Segmentation

PWC

PWC

Introduction

The fully convolutional network (FCN) has achieved tremendous success in dense visual recognition tasks, such as scene segmentation. The last layer of FCN is typically a global classifier (1×1 convolution) to recognize each pixel to a semantic label. We empirically show that this global classifier, ignoring the intra-class distinction, may lead to sub-optimal results.

In this work, we present a conditional classifier to replace the traditional global classifier, where the kernels of the classifier are generated dynamically conditioned on the input. The main advantages of the new classifier consist of: (i) it attends on the intra-class distinction, leading to stronger dense recognition capability; (ii) the conditional classifier is simple and flexible to be integrated into almost arbitrary FCN architectures to improve the prediction. Extensive experiments demonstrate that the proposed classifier performs favourably against the traditional classifier on the FCN architecture. The framework equipped with the conditional classifier (called CondNet) achieves new state-of-the-art performances on two datasets.


Major Features

  • Simple and Flexible
  • Incorporated with almost arbitrary FCN architectures
  • Attending on the sample-specific distinction of each category

Results and Models

ADE20K

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip) config download
CondNet R-50-D8 512x512 160000 43.68 44.30 config model
CondNet R-101-D8 512x512 160000 45.64 47.12 config model

Pascal Context 59

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip) config download
CondNet R-101-D8 480x480 80000 54.29 55.74 config model

Environments

The code is developed using python 3.7 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 8 NVIDIA V100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick Start

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV
  • MMSegmentation

Please refer to the guide for the information about he compatible MMSegmentation and MMCV versions. Please install the correct version of MMCV to avoid installation issues.

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions. Here we use PyTorch 1.6.0 and CUDA 10.1. You may also switch to other version by specifying the version number.

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch

c. Install MMCV following the official instructions. Either mmcv or mmcv-full is compatible with MMSegmentation, but for methods like CCNet and PSANet, CUDA ops in mmcv-full is required.

The pre-build mmcv-full (with PyTorch 1.6 and CUDA 10.1) can be installed by running: (other available versions could be found here)

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html

Or you should download the cl compiler from web and then set up the path.

Then, clone mmcv from github and install mmcv via pip:

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Or simply:

pip install mmcv

d. Install build requirements

pip install -r requirements.txt

Prepare datasets

It is recommended to symlink the dataset root to $CONDNET/data. If your folder structure is different, you may need to change the corresponding paths in config files.

condnet
├── models
├── tools
├── configs
├── data
│   ├── VOCdevkit
│   │   ├── VOC2012
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClass
│   │   │   ├── ImageSets
│   │   │   │   ├── Segmentation
│   │   ├── VOC2010
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClassContext
│   │   │   ├── ImageSets
│   │   │   │   ├── SegmentationContext
│   │   │   │   │   ├── train.txt
│   │   │   │   │   ├── val.txt
│   │   │   ├── trainval_merged.json
│   │   ├── VOCaug
│   │   │   ├── dataset
│   │   │   │   ├── cls
│   ├── ade
│   │   ├── ADEChallengeData2016
│   │   │   ├── annotations
│   │   │   │   ├── training
│   │   │   │   ├── validation
│   │   │   ├── images
│   │   │   │   ├── training
│   │   │   │   ├── validation

ADE20K

The training and validation set of ADE20K could be download from this link. We may also download test set from here.

Pascal Context

The training and validation set of Pascal Context could be download from here. You may also download test set from here after registration.

To split the training and validation set from original dataset, you may download trainval_merged.json from here.

If you would like to use Pascal Context dataset, please install Detail and then run the following command to convert annotations into proper format.

python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json

More datasets please refer to MMSegmentation.

Training and Testing

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

By default we evaluate the model on the validation set after some iterations, you can change the evaluation interval by adding the interval argument in the training config.

evaluation = dict(interval=4000)  # This evaluate the model per 4000 iterations.

*Important*: The default learning rate in config files is for 4 GPUs and 2 img/gpu (batch size = 4x2 = 8). Equivalently, you may also use 8 GPUs and 1 imgs/gpu since all models using cross-GPU SyncBN.

To trade speed with GPU memory, you may pass in --options model.backbone.with_cp=True to enable checkpoint in backbone.

Training

Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work-dir ${YOUR_WORK_DIR}.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

  • --no-validate (not suggested): By default, the codebase will perform evaluation at every k iterations during the training. To disable this behavior, use --no-validate.
  • --work-dir ${WORK_DIR}: Override the working directory specified in the config file.
  • --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file (to continue the training process).
  • --load-from ${CHECKPOINT_FILE}: Load weights from a checkpoint file (to start finetuning for another task).

Difference between resume-from and load-from:

  • resume-from loads both the model weights and optimizer state including the iteration number.
  • load-from loads only the model weights, starts the training from iteration 0.

Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need to specify different ports (29500 by default) for each job to avoid communication conflict. Otherwise, there will be error message saying RuntimeError: Address already in use.

If you use dist_train.sh to launch training jobs, you can set the port in commands with environment variable PORT.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use slurm_train.sh to launch training jobs, you can set the port in commands with environment variable MASTER_PORT.

MASTER_PORT=29500 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE}
MASTER_PORT=29501 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE}

Testing

  • single GPU
  • single node multiple GPU

You can use the following commands to test a dataset.

# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

Optional arguments:

  • RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file. (After mmseg v0.17, the output results become pre-evaluation results or format result paths)
  • EVAL_METRICS: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., mIoU is available for all dataset. Cityscapes could be evaluated by cityscapes as well as standard mIoU metrics.
  • --show: If specified, segmentation results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment, otherwise you may encounter the error like cannot connect to X server.
  • --show-dir: If specified, segmentation results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.
  • --eval-options: Optional parameters for dataset.format_results and dataset.evaluate during evaluation. When efficient_test=True, it will save intermediate results to local files to save CPU memory. Make sure that you have enough local storage space (more than 20GB). (efficient_test argument does not have effect after mmseg v0.17, we use a progressive mode to evaluation and format results which can largely save memory cost and evaluation time.)

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

Test CondNet with 4 GPUs, and evaluate the standard mIoU metric.

```shell
./tools/dist_test.sh configs/condnet/condnet_r101-d8_512x512_160k_ade20k.py \
    checkpoints/condnet_r101-d8_512x512_160k_ade20k.pth \
    4 --out results.pkl --eval mIoU
```

Citation

If you find this project useful in your research, please consider cite:

@ARTICLE{Yucondnet21,
  author={Yu, Changqian and Shao, Yuanjie and Gao, Changxin and Sang, Nong},
  journal={IEEE Signal Processing Letters}, 
  title={CondNet: Conditional Classifier for Scene Segmentation}, 
  year={2021},
  volume={28},
  number={},
  pages={758-762},
  doi={10.1109/LSP.2021.3070472}}

Acknowledgement

Thanks to:

Owner
ycszen
ycszen
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022