Repository of 3D Object Detection with Pointformer (CVPR2021)

Overview

3D Object Detection with Pointformer

This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This work is developed on the top of MMDetection3D toolbox and includes the models and results on SUN RGB-D and ScanNet datasets in the paper.

Overall Structure

More models results on KITTI and nuScenes datasets will be released soon.

Installation and Usage

The code is developed with MMDetection3D v0.6.1 and works well with v0.14.0.

Dependencies

  • NVIDIA GPU + CUDA 10.2
  • Python 3.8 (Recommend to use Anaconda)
  • PyTorch == 1.8.0
  • mmcv-full == 1.3.7
  • mmdet == 2.11.0
  • mmsegmentation == 0.13.0

Installation

  1. Install dependencies following their guidelines.
  2. Clone and install mmdet3d in develop mode.
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
python setup.py develop
  1. Add the files in this repo into the directories in mmdet3d.

Training and Testing

Download the pretrained weights from Google Drive or Tsinghua Cloud and put them in the checkpoints folder. Use votenet_ptr_sunrgbd-3d-10class as an example:

# Training
bash -x tools/dist_train.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py 8

# Testing 
bash tools/dist_test.sh configs/pointformer/votenet_ptr_sunrgbd-3d-10class.py checkpoints/votenet_ptr_sunrgbd-3d-10class.pth 8 --eval mAP

Results

SUN RGB-D

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8343 0.9515 0.5556 0.7029
table 0.5353 0.8705 0.2344 0.4604
sofa 0.6588 0.9171 0.4979 0.6715
chair 0.7681 0.8700 0.5664 0.6703
toilet 0.9117 0.9931 0.5538 0.7103
desk 0.2458 0.8050 0.0754 0.3395
dresser 0.3626 0.8028 0.2357 0.4908
night_stand 0.6701 0.9020 0.4525 0.6196
bookshelf 0.3383 0.6809 0.0968 0.2624
bathtub 0.7821 0.8980 0.4259 0.5510
Overall 0.6107 0.8691 0.3694 0.5479

ScanNet

classes AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4548 0.7930 0.1757 0.4435
bed 0.8839 0.9506 0.8006 0.8889
chair 0.9011 0.9386 0.7562 0.8136
sofa 0.8915 0.9794 0.6619 0.8041
table 0.6763 0.8714 0.4858 0.6971
door 0.5413 0.7216 0.2107 0.4283
window 0.4821 0.7021 0.1504 0.2979
bookshelf 0.5255 0.8701 0.4422 0.7273
picture 0.1815 0.3649 0.0748 0.1351
counter 0.6210 0.8654 0.2333 0.3846
desk 0.6859 0.9370 0.3774 0.6535
curtain 0.5522 0.7910 0.3156 0.4627
refrigerator 0.5215 0.9649 0.4028 0.7193
showercurtrain 0.6709 0.9643 0.1941 0.5000
toilet 0.9922 1.0000 0.8210 0.8793
sink 0.6361 0.7347 0.4119 0.5000
bathtub 0.8710 0.8710 0.8375 0.8387
garbagebin 0.4762 0.7264 0.2244 0.4604
Overall 0.6425 0.8359 0.4209 0.5908

For more details of experimetns please refer to the paper.

Acknowledgement

This code is based on MMDetection3D.

Citation

If you find our work is useful in your research, please consider citing:

@InProceedings{Pan_2021_CVPR,
    author    = {Pan, Xuran and Xia, Zhuofan and Song, Shiji and Li, Li Erran and Huang, Gao},
    title     = {3D Object Detection With Pointformer},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7463-7472}
}

@misc{pan20203d,
  title={3D Object Detection with Pointformer}, 
  author={Xuran Pan and Zhuofan Xia and Shiji Song and Li Erran Li and Gao Huang},
  year={2020},
  eprint={2012.11409},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
Owner
Zhuofan Xia
Zhuofan Xia
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022