DLWP: Deep Learning Weather Prediction

Overview

DLWP: Deep Learning Weather Prediction

DLWP is a Python project containing data-processing and model-building tools for predicting the gridded atmosphere using deep convolutional neural networks.

Reference

If you use this code or find it useful please cite our publication!

Getting started

For now, DLWP is not a package that can be installed using pip or a setup.py file, so it works like most research code: download (or checkout) and run.

Required dependencies

It is assumed that the following are installed using Anaconda Python 3 (Python 2.7 is supported).

  • TensorFlow (GPU capable version highly recommended). The conda package, while not the recommended installation method, is easy and also installs the required CUDA dependencies. For best performance, follow the instructions for installing from source.
    conda install tensorflow-gpu
  • Keras
    pip install keras
  • netCDF4
    conda install netCDF4
  • xarray
    conda install dask xarray

Optional dependencies

The following are required only for some of the DLWP features:

  • PyTorch: for torch-based deep learning models. Again the GPU-ready version is recommended.
    pip install torch torchvision
  • scikit-learn: for machine learning pre-processing tools such as Scalers and Imputers
    conda install scikit-learn
  • scipy: for CFS data interpolation
  • pygrib: for raw CFS data processing
    pip install pygrib
  • cdsapi: for retrieval of ERA5 data
    pip install cdsapi
  • pyspharm: spherical harmonics transforms for the barotropic model
    conda install -c conda-forge pyspharm

Quick overview

General framework

DLWP is built as a weather forecasting model that can, should performance improve greatly, "replace" and existing global weather or climate model. Essentially, this means that DLWP uses a deep convolutional neural network to map the state of the atmosphere at one time to the entire state of the atmophere at the next available time. A continuous forecast can then be made by feeding the model's predicted state back in as inputs, producing indefinite forecasts.

Data processing

The classes in DLWP.data provide tools for retrieving and processing raw data from the CFS reanalysis and reforecast and the ERA5 reanalysis. Meanwhile, the DLWP.model.preprocessing module provides tools for formatting the data for ingestion into the deep learning models. The following examples retrieve and process data from the CFS reanalysis:

  • examples/write_cfs.py
  • examples/write_cfs_predictors.py

The resulting file of predictor data can be ingested into the data generators for the models.

Keras models

The DLWP.model module contains classes for building and training Keras and PyTorch models. The DLWPNeuralNet class is essentially a wrapper for the simple Keras Sequential model, adding optional run-time scaling and imputing of data. It implements a few key methods:

  • build_model: use a custom API to assemble layers in a Sequential model. Also implements models running on multiple GPUs.
  • fit: scale the data and fit the model
  • fit_generator: use the Keras fit_generator method along with a custom data generator (see section below)
  • predict: predict with the model
  • predict_timeseries: predict a continuous time series forecast, where the output of one prediction iteration is used as the input for the next

An example of a model built and trained with the DLWP APIs using data generated by the DLWP processing methods, see examples/train.py.

DLWP also implements a DLWPFunctional class which implements the same methods as the DLWPNeuralNet class but takes as input to build_model a model assembled using the Keras functional API. For an example of training a functional model, see examples/train_functional.py.

PyTorch models

Currently, due to a focus on TensorFlow/Keras models, the PyTorch implementation in DLWP is more limited, although still robust. Like the Keras models, it implements a convenient build_model method to assemble a sequential-like model using the same API parameters as those for DLWPNeuralNet. Additionally, it also implements a fit method to automatically iterate through the data and optimizer, again, just like the Keras API.

The PyTorch example, train_torch.py, is somewhat outdated and uses the spherical convolution library s2cnn. This method has yet to produce good results.

Custom layers and functions

The DLWP.custom module contains many custom layers specifically for applying convolutional neural networks to the global weather prediction problem. For example, PeriodicPadding2D implements periodic boundary conditions for padding data in space prior to applying convolutions. These custom layers are worth a look.

Data generators

DLWP.model.generators contains several classes for generating data on-the-fly from a netCDF file produced by the DLWP preprocessing methods. These data generators can then be used in conjunction with a DWLP model instance's fit_generator method.

  • The DataGenerator class is the simplest generator class. It merely returns batches of data from a file containing "predictors" and "targets" variables already formatted for use in the DLWP model. Due to this simplicity, this is the optimal way to generate data directly from the disk when system memory is not sufficient to load the entire dataset. However, this comes at the cost of generating very large files on disk with redundant data (since the targets are merely a different time shift of the predictors).
  • The SeriesDataGenerator class is much more robust and memory efficient. It expects only a single "predictors" variable in the input file and generates predictor-target pairs on the fly for each batch of data. It also has the ability to prescribe external fields such as incoming solar radiation.
  • The SmartDataGenerator is deprecated in favor of SeriesDataGenerator.

Advanced forecast tools

The DLWP.model module also contains a TimeSeriesEstimator class. This class can be used to make robust forward forecasts where the data input does not necessarily match the data output of a model. And example usage of this class is in examples/validate.py, which performs basic routines to validate the forecast skill of DLWP models.

Other

The DLWP.util module contains useful utilities, including save_model and load_model for saving and loading DLWP models (and correctly dealing with multi-GPU models).

Owner
Kushal Shingote
Android Developer📱📱 iOS Apps📱📱 Swift | Xcode | SwiftUI iOS Swift development📱 Kotlin Application📱📱 iOS📱 Artificial Intelligence 💻 Data science
Kushal Shingote
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022