Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

Overview

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021]

Open In Colab report report

PARE: Part Attention Regressor for 3D Human Body Estimation,
Muhammed Kocabas, Chun-Hao Paul Huang, Otmar Hilliges Michael J. Black,
International Conference on Computer Vision (ICCV), 2021

Features

PARE is an occlusion-robust human pose and shape estimation method. This implementation includes the demo and evaluation code for PARE implemented in PyTorch.

Updates

  • 13/10/2021: Demo and evaluation code is released.

Getting Started

PARE has been implemented and tested on Ubuntu 18.04 with python >= 3.7. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/mkocabas/PARE.git

Install the requirements using virtualenv or conda:

# pip
source scripts/install_pip.sh

# conda
source scripts/install_conda.sh

Demo

First, you need to download the required data (i.e our trained model and SMPL model parameters). It is approximately 1.3GB. To do this you can just run:

source scripts/prepare_data.sh

Video Demo

Run the command below. See scripts/demo.py for more options.

python scripts/demo.py --vid_file data/sample_video.mp4 --output_folder logs/demo 

Sample demo output:

Image Folder Demo

python scripts/demo.py --image_folder <path to image folder> --output_folder logs/demo

Output format

If demo finishes succesfully, it needs to create a file named pare_output.pkl in the --output_folder. We can inspect what this file contains by:

>>> import joblib # you may also use native pickle here as well

>>> output = joblib.load('pare_output.pkl') 

>>> print(output.keys())  
                                                                                                                                                                                                                                                                                                                                                                                              
dict_keys([1, 2, 3, 4]) # these are the track ids for each subject appearing in the video

>>> for k,v in output[1].items(): print(k,v.shape) 

pred_cam (n_frames, 3)          # weak perspective camera parameters in cropped image space (s,tx,ty)
orig_cam (n_frames, 4)          # weak perspective camera parameters in original image space (sx,sy,tx,ty)
verts (n_frames, 6890, 3)       # SMPL mesh vertices
pose (n_frames, 72)             # SMPL pose parameters
betas (n_frames, 10)            # SMPL body shape parameters
joints3d (n_frames, 49, 3)      # SMPL 3D joints
joints2d (n_frames, 21, 3)      # 2D keypoint detections by STAF if pose tracking enabled otherwise None
bboxes (n_frames, 4)            # bbox detections (cx,cy,w,h)
frame_ids (n_frames,)           # frame ids in which subject with tracking id #1 appears
smpl_joints2d (n_frames, 49, 2) # SMPL 2D joints 

Google Colab

Training

Training instructions will follow soon.

Evaluation

You need to download 3DPW and 3DOH datasets before running the evaluation script. After the download, the data folder should look like:

data/
├── body_models
│   └── smpl
├── dataset_extras
├── dataset_folders
│   ├── 3doh
│   └── 3dpw
└── pare
    └── checkpoints

Then, you can evaluate PARE by running:

python scripts/eval.py \
  --cfg data/pare/checkpoints/pare_config.yaml \
  --opts DATASET.VAL_DS 3doh_3dpw-all
  
python scripts/eval.py \
  --cfg data/pare/checkpoints/pare_w_3dpw_config.yaml \
  --opts DATASET.VAL_DS 3doh_3dpw-all

You should obtain results in this table on 3DPW test set:

MPJPE PAMPJPE V2V
PARE 82 50.9 97.9
PARE (w. 3DPW) 74.5 46.5 88.6

Occlusion Sensitivity Analysis

We prepare a script to run occlusion sensitivity analysis proposed in our paper. Occlusion sensitivity analysis slides an occluding patch on the image and visualizes how human pose and shape estimation result affected.

python scripts/occlusion_analysis.py \
  --cfg data/pare/checkpoints/pare_config.yaml \
  --ckpt data/pare/checkpoints/pare_checkpoint.ckpt

Sample occlusion test output:

Citation

@inproceedings{Kocabas_PARE_2021,
  title = {{PARE}: Part Attention Regressor for {3D} Human Body Estimation},
  author = {Kocabas, Muhammed and Huang, Chun-Hao P. and Hilliges, Otmar and Black, Michael J.},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  pages = {11127--11137},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE. Third-party datasets and software are subject to their respective licenses.

References

We indicate if a function or script is borrowed externally inside each file. Consider citing these works if you use them in your project.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Comments
  • cannot run the demo.py

    cannot run the demo.py

    I cloned the repo and run 'source scripts/install_pip.sh' 'source scripts/prepare_data.sh' 'python scripts/demo.py --vid_file data/sample_video.mp4 --output_folder logs/demo '. Then i got error:

    "(PARE) [email protected]:~/桌面/Paper/PARE$ python scripts/demo.py --vid_file data/sample_video.mp4 --output_folder logs/demo

    2021-11-01 21:05:45.270 | INFO | main:main:65 - Frames are already extracted in "logs/demo/sample_video_/tmp_images" 2021-11-01 21:05:45.389 | INFO | main:main:97 - Demo options: Namespace(batch_size=16, beta=1.0, cfg='data/pare/checkpoints/pare_w_3dpw_config.yaml', ckpt='data/pare/checkpoints/pare_w_3dpw_checkpoint.ckpt', detector='yolo', display=False, draw_keypoints=False, exp='', image_folder=None, min_cutoff=0.004, mode='video', no_render=False, no_save=False, output_folder='logs/demo', save_obj=False, sideview=False, smooth=False, staf_dir='/home/mkocabas/developments/openposetrack', tracker_batch_size=12, tracking_method='bbox', vid_file='data/sample_video.mp4', wireframe=False, yolo_img_size=416) 2021-11-01 21:05:46.038 | INFO | pare.models.backbone.hrnet:init_weights:530 - => init weights from normal distribution 2021-11-01 21:05:46.231 | WARNING | pare.models.backbone.hrnet:init_weights:558 - IMPORTANT WARNING!! Please download pre-trained models if you are in TRAINING mode! 2021-11-01 21:05:46.231 | INFO | pare.models.head.pare_head:init:125 - "Keypoint Attention" should be activated to be able to use part segmentation 2021-11-01 21:05:46.231 | INFO | pare.models.head.pare_head:init:126 - Overriding use_keypoint_attention 2021-11-01 21:05:46.253 | INFO | pare.models.head.pare_head:init:327 - Keypoint attention is active WARNING: You are using a SMPL model, with only 10 shape coefficients. 2021-11-01 21:05:58.125 | INFO | pare.core.tester:_load_pretrained_model:113 - Loading pretrained model from data/pare/checkpoints/pare_w_3dpw_checkpoint.ckpt 2021-11-01 21:05:58.365 | WARNING | pare.utils.train_utils:load_pretrained_model:45 - Removing "model." keyword from state_dict keys.. 2021-11-01 21:05:58.749 | INFO | pare.core.tester:_load_pretrained_model:116 - Loaded pretrained weights from "data/pare/checkpoints/pare_w_3dpw_checkpoint.ckpt" 2021-11-01 21:05:58.753 | INFO | main:main:103 - Input video number of frames 3080 Downloading files from https://raw.githubusercontent.com/mkocabas/yolov3-pytorch/master/yolov3/config/yolov3.cfg --2021-11-01 21:05:58-- https://raw.githubusercontent.com/mkocabas/yolov3-pytorch/master/yolov3/config/yolov3.cfg 正在连接 127.0.0.1:8889... 已连接。 已发出 Proxy 请求,正在等待回应... 200 OK 长度: 8338 (8.1K) [text/plain] 正在保存至: “/home/ywk/.torch/config/yolov3.cfg”

    yolov3.cfg 100%[===================>] 8.14K --.-KB/s 用时 0s

    2021-11-01 21:05:59 (32.7 MB/s) - 已保存 “/home/ywk/.torch/config/yolov3.cfg” [8338/8338])

    Running Multi-Person-Tracker 100%|█████████████████████████████████████████| 257/257 [01:23<00:00, 3.09it/s] Finished. Detection + Tracking FPS 37.06 2021-11-01 14:54:27.210 | INFO | pare.core.tester:run_on_video:287 - Running PARE on each tracklet... 0%| | 0/278 [00:00<?, ?it/s]2021-11-07 14:54:28.564 | INFO | pare.core.tester:run_on_video:362 - Converting smpl keypoints 2d to original image coordinate 0%|▏ | 1/278 [00:01<06:12, 1.34s/it]2021-11-07 14:54:30.089 | INFO | pare.core.tester:run_on_video:362 - Converting smpl keypoints 2d to original image coordinate 1%|▎ | 2/278 [00:02<06:26, 1.40s/it]2021-11-07 14:54:31.578 | INFO | pare.core.tester:run_on_video:362 - Converting smpl keypoints 2d to original image coordinate 1%|▍ | 3/278 [00:04<06:32, 1.43s/it] ................ 100%|█████████████████████████████████████████| 278/278 [03:13<00:00, 1.44it/s] 2021-11-01 21:10:36.733 | INFO | main:main:115 - PARE FPS: 15.92 2021-11-01 21:10:36.733 | INFO | main:main:117 - Total time spent: 277.98 seconds (including model loading time). 2021-11-01 21:10:36.733 | INFO | main:main:118 - Total FPS (including model loading time): 11.08. 2021-11-01 21:10:36.734 | INFO | main:main:121 - Saving output results to "logs/demo/sample_video_/pare_output.pkl". WARNING: You are using a SMPL model, with only 10 shape coefficients. libEGL warning: DRI2: failed to create dri screen libEGL warning: DRI2: failed to create dri screen Traceback (most recent call last): File "scripts/demo.py", line 238, in main(args) File "scripts/demo.py", line 126, in main orig_width, orig_height, num_frames) File "./pare/core/tester.py", line 392, in render_results wireframe=self.args.wireframe File "./pare/utils/vibe_renderer.py", line 66, in init point_size=1.0 File "/home/ywk/anaconda3/envs/PARE/lib/python3.7/site-packages/pyrender/offscreen.py", line 31, in init self._create() File "/home/ywk/anaconda3/envs/PARE/lib/python3.7/site-packages/pyrender/offscreen.py", line 134, in _create self._platform.init_context() File "/home/ywk/anaconda3/envs/PARE/lib/python3.7/site-packages/pyrender/platforms/egl.py", line 177, in init_context assert eglInitialize(self._egl_display, major, minor) File "/home/ywk/anaconda3/envs/PARE/lib/python3.7/site-packages/OpenGL/platform/baseplatform.py", line 415, in call return self( *args, **named ) File "/home/ywk/anaconda3/envs/PARE/lib/python3.7/site-packages/OpenGL/error.py", line 234, in glCheckError baseOperation = baseOperation, OpenGL.raw.EGL._errors.EGLError: EGLError( err = EGL_NOT_INITIALIZED, baseOperation = eglInitialize, cArguments = ( <OpenGL._opaque.EGLDisplay_pointer object at 0x7f9a2e003710>, c_long(0), c_long(0), ), result = 0 )" can you tell me how solve the error?

    opened by yiweike 5
  • Could you provide the 3DPW-OCC dataset?

    Could you provide the 3DPW-OCC dataset?

    Thanks for the exciting work.

    Can you provide the 3DPW-OCC dataset mentioned in the paper?

    It would be appreciated if you provide a 3DPW-OCC annotation file or video sequence names.

    Thank you.

    opened by hygenie1228 3
  • pare-github-data

    pare-github-data

    Hi

    I`m tring to run demo, but the file pare-github-data.zip on https://www.dropbox.com/s/aeulffqzb3zmh8x/pare-github-data.zip cannot download. Is there any other way can i get it?

    thank u so much

    opened by cytcyt1111 3
  • Output for images folder

    Output for images folder

    Hi,

    Congratulations on such a great work!

    When I run PARE on an image folder I get an output pkl file that doesn't match what you specify in README.me.

    For example, you specify an output key: pose (n_frames, 72) # SMPL pose parameters But in the output from an image folder I get this: pred_pose (1, 24, 3, 3)

    I guess that you are transforming the 72 parameters into 24 joints rotation matrices, but I can't know exactly the format of these rotations. Would it be possible to also get the original pose parameters?

    Another question is about the joints output, which includes 49 elements. But the SMPL skeleton has only 24 joints... How do I relate this 49 positions to the original 24 joints?

    Thank you in advance.

    Sincerely,

    Alejandro Beacco

    opened by abeacco 2
  • Any improvement for multiview SMPL fitting?

    Any improvement for multiview SMPL fitting?

    I'm trying to fit SMPL to scans. Currently, I just render it in different views and choose the result predicted by PARE with lowest Chamfer distance. Is there any feasible improvement on view consistency?

    opened by Charlulote 1
  • why PARE don't have fitting part?

    why PARE don't have fitting part?

    From VIBE, there are some operation when do smpl, it will do fitting in a train loop, but PARE seems don't have it. Why it was still performance better than VIBE?

    opened by jinfagang 1
  • How to get the heatmap results like the figure 1 in your paper?

    How to get the heatmap results like the figure 1 in your paper?

    Hi @mkocabas, PARE is an interesting work. Analyses on the influence of occlusions are meaningful. Could you please tell me how to get the heatmap results for deeper analysising?

    opened by syguan96 1
  • Issues on evaluation process

    Issues on evaluation process

    Thanks for the great work!

    I wanted to leave issues while I was running the evaluation code.

    https://github.com/mkocabas/PARE/blob/fa90affb6f8fc266d84a91b53b7f5c4a803fb759/scripts/eval.py#L39 num_workers=-1 raises an error in my machine as below: ValueError: num_workers option should be non-negative; use num_workers=0 to disable multiprocessing.

    num_workers=0 resolves the issue.

    In order to use jpeg4py module smoothly, I had to install libturbojpeg using the following command: sudo apt-get install libturbojpeg You might not have noticed this dependency yet, since it's not a python module.

    opened by uyoung-jeong 1
  • where are the Sup. Mat?

    where are the Sup. Mat?

    Hello, thanks for your excellent job! You have mentioned in articles that more details are provided in Sup. Mat, but I haven't found where are the Sup. Mat?

    opened by Fmin-Zou 0
  • Part Features

    Part Features

    Hi Vibe, Great Work!

    I wanted to ask, I need the part features before the heat maps. Altho, from the code I see that the final step of the part features is the _get_part_attention_map function. Afterwards, I see that there is an if statement that says: elif self.use_heatmaps == 'part_segm' then output['pred_segm_mask'] = heatmaps. I wanted to ask, in this case the pred_segm_mask are the body part segments as you attached in the appendix of the paper? (see attached picture :-) ) image

    opened by asafjo23 0
  • How to pass shape data for the

    How to pass shape data for the "humanoids" outlook

    Hi, hope you are fine.

    I'm looking to use PARE for a project.

    The whole idea is pass a multiperson video dataset where the humanoids takes the gesture and save just the humanoids on a separate video.

    I want to pass some parameters on the result like age, gender, race,... so in the next step, humanizing the "humanoid" can "dress" it with images provided (body and faces)

    Please let me know how to separate the results in different video dataset of the "humanoids" replicating the movements.

    Appreciate!

    opened by venturaEffect 0
  • joints2d not found

    joints2d not found

    Hi, after I run the image folder demo,I can't find joints2d in the output file. If it is possible to share the STAF dir? The path in demo.py is '/home/mkocabas/developments/openposetrack', and I can't find it. Thank you very much.

    opened by Oliver-ny 1
Owner
Muhammed Kocabas
Muhammed Kocabas
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022