GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

Overview

GCNet for Object Detection

PWC PWC PWC PWC

By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu.

This repo is a official implementation of "GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond" on COCO object detection based on open-mmlab's mmdetection. The core operator GC block could be find here. Many thanks to mmdetection for their simple and clean framework.

Update on 2020/12/07

The extension of GCNet got accepted by TPAMI (PDF).

Update on 2019/10/28

GCNet won the Best Paper Award at ICCV 2019 Neural Architects Workshop!

Update on 2019/07/01

The code is refactored. More results are provided and all configs could be found in configs/gcnet.

Notes: Both PyTorch official SyncBN and Apex SyncBN have some stability issues. During training, mAP may drops to zero and back to normal during last few epochs.

Update on 2019/06/03

GCNet is supported by the official mmdetection repo here. Thanks again for open-mmlab's work on open source projects.

Introduction

GCNet is initially described in arxiv. Via absorbing advantages of Non-Local Networks (NLNet) and Squeeze-Excitation Networks (SENet), GCNet provides a simple, fast and effective approach for global context modeling, which generally outperforms both NLNet and SENet on major benchmarks for various recognition tasks.

Citing GCNet

@article{cao2019GCNet,
  title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
  author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han},
  journal={arXiv preprint arXiv:1904.11492},
  year={2019}
}

Main Results

Results on R50-FPN with backbone (fixBN)

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R50-FPN Mask fixBN 2fc (w/o BN) - 1x 3.9 0.453 10.6 37.3 34.2 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 1x 4.5 0.533 10.1 38.5 35.1 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 1x 4.6 0.533 9.9 38.9 35.5 model
R50-FPN Mask fixBN 2fc (w/o BN) - 2x - - - 38.2 34.9 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 2x - - - 39.7 36.1 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 2x - - - 40.0 36.2 model

Results on R50-FPN with backbone (syncBN)

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R50-FPN Mask SyncBN 2fc (w/o BN) - 1x 3.9 0.543 10.2 37.2 33.8 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 4.5 0.547 9.9 39.4 35.7 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 4.6 0.603 9.4 39.9 36.2 model
R50-FPN Mask SyncBN 2fc (w/o BN) - 2x 3.9 0.543 10.2 37.7 34.3 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 2x 4.5 0.547 9.9 39.7 36.0 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 2x 4.6 0.603 9.4 40.2 36.3 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) - 1x - - - 38.8 34.6 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) GC(c3-c5, r16) 1x - - - 41.0 36.5 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) GC(c3-c5, r4) 1x - - - 41.4 37.0 model

Results on stronger backbones

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R101-FPN Mask fixBN 2fc (w/o BN) - 1x 5.8 0.571 9.5 39.4 35.9 model
R101-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 1x 7.0 0.731 8.6 40.8 37.0 model
R101-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 1x 7.1 0.747 8.6 40.8 36.9 model
R101-FPN Mask SyncBN 2fc (w/o BN) - 1x 5.8 0.665 9.2 39.8 36.0 model
R101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 7.0 0.778 9.0 41.1 37.4 model
R101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 7.1 0.786 8.9 41.7 37.6 model
X101-FPN Mask SyncBN 2fc (w/o BN) - 1x 7.1 0.912 8.5 41.2 37.3 model
X101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 8.2 1.055 7.7 42.4 38.0 model
X101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 8.3 1.037 7.6 42.9 38.5 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) - 1x - - - 44.7 38.3 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x - - - 45.9 39.3 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x - - - 46.5 39.7 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) - 1x - - - 47.1 40.4 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x - - - 47.9 40.9 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x - - - 47.9 40.8 model

Notes

  • GC denotes Global Context (GC) block is inserted after 1x1 conv of backbone.
  • DCN denotes replace 3x3 conv with 3x3 Deformable Convolution in c3-c5 stages of backbone.
  • r4 and r16 denote ratio 4 and ratio 16 in GC block respectively.
  • Some of models are trained on 4 GPUs with 4 images on each GPU.

Requirements

  • Linux(tested on Ubuntu 16.04)
  • Python 3.6+
  • PyTorch 1.1.0
  • Cython
  • apex (Sync BN)

Install

a. Install PyTorch 1.1 and torchvision following the official instructions.

b. Install latest apex with CUDA and C++ extensions following this instructions. The Sync BN implemented by apex is required.

c. Clone the GCNet repository.

 git clone https://github.com/xvjiarui/GCNet.git 

d. Compile cuda extensions.

cd GCNet
pip install cython  # or "conda install cython" if you prefer conda
./compile.sh  # or "PYTHON=python3 ./compile.sh" if you use system python3 without virtual environments

e. Install GCNet version mmdetection (other dependencies will be installed automatically).

python(3) setup.py install  # add --user if you want to install it locally
# or "pip install ."

Note: You need to run the last step each time you pull updates from github. Or you can run python(3) setup.py develop or pip install -e . to install mmdetection if you want to make modifications to it frequently.

Please refer to mmdetection install instruction for more details.

Environment

Hardware

  • 8 NVIDIA Tesla V100 GPUs
  • Intel Xeon 4114 CPU @ 2.20GHz

Software environment

  • Python 3.6.7
  • PyTorch 1.1.0
  • CUDA 9.0
  • CUDNN 7.0
  • NCCL 2.3.5

Usage

Train

As in original mmdetection, distributed training is recommended for either single machine or multiple machines.

./tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> [optional arguments]

Supported arguments are:

  • --validate: perform evaluation every k (default=1) epochs during the training.
  • --work_dir <WORK_DIR>: if specified, the path in config file will be replaced.

Evaluation

To evaluate trained models, output file is required.

python tools/test.py <CONFIG_FILE> <MODEL_PATH> [optional arguments]

Supported arguments are:

  • --gpus: number of GPU used for evaluation
  • --out: output file name, usually ends wiht .pkl
  • --eval: type of evaluation need, for mask-rcnn, bbox segm would evaluate both bounding box and mask AP.
Owner
Jerry Jiarui XU
Part of the journey is the end
Jerry Jiarui XU
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022