InterfaceGAN++: Exploring the limits of InterfaceGAN

Overview

InterfaceGAN++: Exploring the limits of InterfaceGAN

Authors: Apavou Clément & Belkada Younes

Python 3.8 pytorch 1.10.2 sklearn 0.21.2

Open In Colab

From left to right - Images generated using styleGAN and the boundaries Bald, Blond, Heavy_Makeup, Gray_Hair

This the the repository to a project related to the Introduction to Numerical Imaging (i.e, Introduction à l'Imagerie Numérique in French), given by the MVA Masters program at ENS-Paris Saclay. The project and repository is based on the work from Shen et al., and fully supports their codebase. You can refer to the original README) to reproduce their results.

Introduction

In this repository, we propose an approach, termed as InterFaceGAN++, for semantic face editing based on the work from Shen et al. Specifically, we leverage the ideas from the previous work, by applying the method for new face attributes, and also for StyleGAN3. We qualitatively explain that moving the latent vector toward the trained boundaries leads in many cases to keeping the semantic information of the generated images (by preserving its local structure) and modify the desired attribute, thus helps to demonstrate the disentangled property of the styleGANs.

🔥 Additional features

  • Supports StyleGAN2 & StyleGAN3 on the classic attributes
  • New attributes (Bald, Gray hair, Blond hair, Earings, ...) for:
    • StyleGAN
    • StyleGAN2
    • StyleGAN3
  • Supports face generation using StyleGAN3 & StyleGAN2

The list of new features can be found on our attributes detection classifier repository

🔨 Training an attribute detection classifier

We use a ViT-base model to train an attribute detection classifier, please refer to our classification code if you want to test it for new models. Once you retrieve the trained SVM from this repo, you can directly move them in this repo and use them.

Generate images using StyleGAN & StyleGAN2 & StyleGAN3

We did not changed anything to the structure of the old repository, please refer to the previous README. For StyleGAN

🎥 Get the pretrained StyleGAN

We use the styleGAN trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P interfacegan/models/pretrain https://www.dropbox.com/s/qyv37eaobnow7fu/stylegan_ffhq.pth

🎥 Get the pretrained StyleGAN2

We use the styleGAN2 trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P models/pretrain https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-1024x1024.pkl 

🎥 Get the pretrained StyleGAN3

We use the styleGAN3 trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P models/pretrain https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl 

The pretrained model should be copied at models/pretrain. If not, move the pretrained model file at this directory.

🎨 Run the generation script

If you want to generate 10 images using styleGAN3 downloaded before, run:

python generate_data.py -m stylegan3_ffhq -o output_stylegan3 -n 10

The arguments are exactly the same as the arguments from the original repository, the code supports the flag -m stylegan3_ffhq for styleGAN3 and -m stylegan3_ffhq for styleGAN2.

✏️ Edit generated images

You can edit the generated images using our trained boundaries! Depending on the generator you want to use, make sure that you have downloaded the right model and put them into models/pretrain.

Examples

Please refer to our interactive google colab notebook to play with our models by clicking the following badge:

Open In Colab

StyleGAN

Example of generated images using StyleGAN and moving the images towards the direction of the attribute grey hair:

original images generated with StyleGAN

grey hair version of the images generated with StyleGAN

StyleGAN2

Example of generated images using StyleGAN2 and moving the images towards the opposite direction of the attribute young:

original images generated with StyleGAN2

non young version of the images generated with StyleGAN2

StyleGAN3

Example of generated images using StyleGAN3 and moving the images towards the attribute beard:

Owner
Younes Belkada
MSc Student in Mathematics - Machine Learning - Perception | M2 MVA @ ENS Paris-Saclay
Younes Belkada
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Fast Scattering Transform with CuPy/PyTorch

Announcement 11/18 This package is no longer supported. We have now released kymatio: http://www.kymat.io/ , https://github.com/kymatio/kymatio which

Edouard Oyallon 289 Dec 07, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022