Spectrum is an AI that uses machine learning to generate Rap song lyrics

Overview

Contributors Forks Stargazers Issues MIT License Open In Colab


Spectrum

Spectrum is an AI that uses deep learning to generate rap song lyrics.

View Demo
Report Bug
Request Feature
Open In Colab

About The Project

Spectrum is an AI that uses deep learning to generate rap song lyrics.

Built With

This project is built using Python, Tensorflow, and Flask.

Getting Started

Installation

# clone the repo
git clone https://github.com/YigitGunduc/Spectrum.git

# install requirements
pip install -r requirements.txt

Training

# navigate to the Spectrum/AI folder 
cd Spectrum/AI

# pass verbose, epochs, save_at arguments and run train.py 
python3 train.py -h, --help  --epochs EPOCHS --save_at SAVE_AT --verbose VERBOSE --rnn_neurons RNN_NEURONS
             --embed_dim EMBED_DIM --dropout DROPOUT --num_layers NUM_LAYERS --learning_rate LEARNING_RATE

All the arguments are optional if you leave them empty model will construct itself with the default params

Generating Text from Trained Model

Call eval.py from the command line with seed text as an argument

python3 eval.py --seed SEEDTEXT

or

from model import Generator

model = Generator()

model.load_weights('../models/model-5-epochs-256-neurons.h5')

generatedText = model.predict(start_seed=SEED, gen_size=1000)

print(generatedText)
  • If you have tweaked the model's parameters while training initialize the model with the parameters you trained

Running the Web-App Locally

# navigate to the Spectrum folder 
cd Spectrum

# run app.py
python3 app.py

# check out http://0.0.0.0:8080

API

spectrum has a free web API you can send request to it as shown below

import requests 

response = requests.get("https://spectrumapp.herokuapp.com/api/generate/SEEDTEXT")
#raw response
print(response.json())
#cleaned up response
print(response.json()["lyrics"])

Hyperparameters

epochs = 30 
batch size = 128
number of layers = 2(hidden) + 1(output)
number of RNN units = 256
dropout prob = 0.3
embedding dimensions = 64
optimizer = Adam
loss = sparse categorical crossentropy

These hyperparameters are the best that I can found but you have to be careful while dealing with the hyperparameters because this model can over or underfit quite easily and GRUs performs better than LSTMs

Info about model

>>> from model import Generator
>>> model = Generator()
>>> model.load_weights('../models/model-5-epochs-256-neurons.h5')
>>> model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (1, None, 64)             6400      
_________________________________________________________________
gru (GRU)                    (1, None, 256)            247296    
_________________________________________________________________
gru_1 (GRU)                  (1, None, 256)            394752    
_________________________________________________________________
dense (Dense)                (1, None, 100)            25700     
=================================================================
Total params: 674,148
Trainable params: 674,148
Non-trainable params: 0
_________________________________________________________________

>>> model.hyperparams()
Hyper Parameters
+--------------------------+
|rnn_neurons   |        256|
|embed_dim     |         64|
|learning_rate |     0.0001|
|dropout       |        0.3|
|num_layers    |          2|
+--------------------------+
>>>

Roadmap

See the open issues for a list of proposed features (and known issues).

Results

WARNING: There is some offensive language ahead, please stop reading here if you are a sensitive person. The texts below have been generated by Spectrum

Seed : today

Prediction : 

If that don't, yeah
Weint off the music
It's like a fired-enother foar fool straight for an exactly
Nigga why I id my Door Merican muthafucka

Ng answered by need for blazy hard
The family wish fans dishes rolled up
How better just wanna die
Match all about the moment in I glory
Fire is that attention is the flop and pipe those peokin' distriors
Bitch I been hard and I'm like the Scales me and we're going to school like all-off of the allegit to get the bitches
Yeah kinda too legit back into highin'
A year have it would plobably want

And we all bustin' the conscious in the cusfuckers won't ha
Quite warkie and it's blow, and what? I cannot love him,
Alugal Superman, and the revolution likes migh
I ain't still not I uest the neighborhoo
Powers all too bad show, you crite your bac
When I say way too fathom
If you wanna revell, money, where your face we'll blin
Pulf me very, yo, they pull out for taught nothin' off
I pass a with a nigga hang some, pleas
Fuck me now, it's a

======================================================================
Seed : hello

Prediction : 

hellow motherfucker
You wanna talk on the pockets on Harlotom
I'm legit some more than Volumon
Ridicalab knowledge is blessin' some of your honierby man
We just bust the Flud joke with shoulders on the Statue
Lecock it on everybody want your dices to speak
While she speak cents look back to Pops
He was a nigga when I got behind pictures any Lil Sanvanas
Used to in her lady yaught they never had a bitch
He'll break the jird little rappers kill your children is

I'm prayin' back to ready for that bitch just finished And mised to the gamr
Every eyes on and about that getting common
I'm going to attractived with its
I just went by the crowd get the promise to buy the money-a star big down
Can one sall 'em in me tryna get them days that's how I can break the top
Well, that's hug her hands he screaming like a fucking hip-hop but put a Blidze like rhymin'
Yeah I slack like a Job let your cops got a generres
These West of it today flamping this
Black Kuttle crib, said "Ju Conlie, hold up, fuck the

======================================================================
Seed : bestfriend

Prediction : 

bestfriend
Too much time we tonight
The way I know is a please have no self-back when I be for the fucking weed and a game
What the fuck we wanna be working on the streets make it like a stay down the world is from the head of the real brain
Chain don't come back to the grass
My dick is the one to tell you I'm the fuck
So see me we gon' be fans when you had to hear the window you come to the dick when a little cooleng and I was calling what the fuck is it good as the crown
And I'm representing you finally waitin' in your girl
This is the corner with my brother
I'm just a damn door and the real motherfuckers come got the point my shit is the money on the world

I get it then the conscious that's why I cripp
I might take my own shit so let me have a bad bitch
I'm just had and make the fuck is in the single of the window
I think I ain't got the world is all my gone be mine
They ain't like the half the best between my words
And I'm changing with the heads of the speech
Fuck a bunch of best of a fuck

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022