Face Library is an open source package for accurate and real-time face detection and recognition

Related tags

Deep Learningface_lib
Overview

Face Library

Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and using famous models and algorithms for face detection and recognition tasks. Make face detection and recognition with only one line of code. The Library doesn't use heavy frameworks like TensorFlow, Keras and PyTorch so it makes it perfect for production.

Installation

pip install face-library

Usage

Importing

from face_lib import face_lib
FL = face_lib()

The model is built over OpenCV, so it expects cv2 input (i.e. BGR image), it will support PIL in the next version for RGB inputs. At the end there is a piece of code to make PIL image like cv2 image.

Face detection

import cv2

img = cv2.imread(path_to_image)
faces = FL.get_faces(img) #return list of RGB faces image

If you want to get faces locations (coordinates) instead of the faces from the image you can use

no_of_faces, faces_coors = FL.faces_locations(face_img)

Face verfication

img_to_verfiy = cv2.imread(path_to_image_to_verify) #image that contain face you want verify
gt_img = cv2.imread(path_to_image_to_compare) #image of the face to compare with

face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image)

You can change the threshold of verfication with the best for your usage or dataset like this :

face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image, threshold = 1.1) #default number is 0.92

also if you know that gt_img has only one face and the image is zoomed to that face like this :

You can save computing time and the make the model more faster by using

face_exist, no_faces_detected = FL.recognition_pipeline(img_to_verfiy, gt_image, only_face_gt = True)

Extracting face embeddings

I you want represent the face with vector from face only image, you can use

face_embeddings = FL.face_embeddings(face_only_image)

For PIL images

import cv2
import numpy
from PIL import Image

PIL_img = Image.open(path_to_image)

cv2_img = cv2.cvtColor(numpy.array(PIL_img), cv2.COLOR_RGB2BGR) #now you can use this to be input for face_lib functions

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Support

There are many ways to support a project - starring ⭐️ the GitHub repo is just one.

Licence

Face library is licensed under the MIT License

You might also like...
A real-time speech emotion recognition application using Scikit-learn and gradio
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

A large-scale face dataset for face parsing, recognition, generation and editing.
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

High accurate tool for automatic faces detection with landmarks
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Comments
  • Face Recognition model corrupted

    Face Recognition model corrupted

    While running the script it says tat "face rcognition model corrupted" and starts to download the model. But it takes too long to download 90 mb file.

    help wanted 
    opened by qnihat 4
  • import issue

    import issue

    This might be a noob python question, but:

    git clone https://github.com/a-akram-98/face_lib.git cd face_lib/ virtualenv -p /usr/bin/python3 venv source venv/bin/activate pip install face-library ...

    (venv) [email protected]:src (master)$ python Python 3.6.9 (default, Jan 26 2021, 15:33:00) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information.

    from face_lib import face_lib Traceback (most recent call last): File "", line 1, in File "/home/jim/source/face_lib/src/face_lib/init.py", line 1, in from .face_lib import face_lib File "/home/jim/source/face_lib/src/face_lib/face_lib.py", line 5, in from .BlazeDetector import BlazeFaceDetector File "/home/jim/source/face_lib/src/face_lib/BlazeDetector.py", line 5, in from blazeFaceUtils import gen_anchors, AnchorsOptions ModuleNotFoundError: No module named 'blazeFaceUtils'

    How do I find the modules?

    bug good first issue 
    opened by jvanvorst 2
  • Issue with size of the image

    Issue with size of the image

    I saw that with big image 958x1280 it gave an opencv error! so 9i made a small function to resize it to 500 on the height:

    `from face_lib import face_lib import cv2 import os FL = face_lib()

    maxsize = int(500) #maximum height in pixel to get an opencv error file = "./sacha.jpg" filename, file_extension = os.path.splitext(os.path.basename(file))

    def checksize(file): print("in") if not os.path.isfile(file): print("error file not found") exit(1) #get the filename and extensionof filepath img = cv2.imread(file) #Get the width and Heigth of filepath height, width, channels = img.shape #Get the correction factor if the image is to big if height > maxsize: factor = float(maxsize/height) print(factor) height = round(int(height) * factor) width = round(int(width) * factor) #Resize the image img = cv2.resize(img,(width, height)) return img

    img = checksize(file) no_of_faces, faces_locations = FL.faces_locations(img) x,y,w,h = faces_locations[0] cv2.rectangle(img, (x,y),(x+w,y+h), (255,0,0),2) cv2.imshow(filename, img) cv2.waitKey(0)`

    that can help anyone

    opened by sachadee 0
Releases(v1.0.5)
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
LBK 20 Dec 02, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022