In-place Parallel Super Scalar Samplesort (IPS⁴o)

Related tags

Deep Learningips4o
Overview

In-place Parallel Super Scalar Samplesort (IPS⁴o)

This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Shared-memory) Sorting Algorithms, which contains an in-depth description of its inner workings, as well as an extensive experimental performance evaluation. Here's the abstract:

We present new sequential and parallel sorting algorithms that now represent the fastest known techniques for a wide range of input sizes, input distributions, data types, and machines. Somewhat surprisingly, part of the speed advantage is due to the additional feature of the algorithms to work in-place, i.e., they do not need a significant amount of space beyond the input array. Previously, the in-place feature often implied performance penalties. Our main algorithmic contribution is a blockwise approach to in-place data distribution that is provably cache-efficient. We also parallelize this approach taking dynamic load balancing and memory locality into account.

Our new comparison-based algorithm In-place Superscalar Samplesort (IPS⁴o), combines this technique with branchless decision trees. By taking cases with many equal elements into account and by adapting the distribution degree dynamically, we obtain a highly robust algorithm that outperforms the best previous in-place parallel comparison-based sorting algorithms by almost a factor of three. That algorithm also outperforms the best comparison-based competitors regardless of whether we consider in-place or not in-place, parallel or sequential settings.

Another surprising result is that IPS⁴o even outperforms the best (in-place or not in-place) integer sorting algorithms in a wide range of situations. In many of the remaining cases (often involving near-uniform input distributions, small keys, or a sequential setting), our new In-place Parallel Super Scalar Radix Sort (IPS²Ra) turns out to be the best algorithm.

Claims to have the -- in some sense -- "best" sorting algorithm can be found in many papers which cannot all be true. Therefore, we base our conclusions on an extensive experimental study involving a large part of the cross product of 21 state-of-the-art sorting codes, 6 data types, 10 input distributions, 4 machines, 4 memory allocation strategies, and input sizes varying over 7 orders of magnitude. This confirms the claims made about the robust performance of our algorithms while revealing major performance problems in many competitors outside the concrete set of measurements reported in the associated publications. This is particularly true for integer sorting algorithms giving one reason to prefer comparison-based algorithms for robust general-purpose sorting.

An initial version of IPS⁴o has been described in our publication on the 25th Annual European Symposium on Algorithms.

Usage

Clone this repository and check out its submodule

git clone --recurse-submodules https://github.com/ips4o/ips4o.git

or use the following commands instead if you want to include this repository as a submodule:

git submodule add https://github.com/ips4o/ips4o.git
git submodule update --recursive --init

IPS⁴o provides a CMake library for simple usage:

add_subdirectory(<path-to-the-ips4o-repository>)
target_link_libraries(<your-target> PRIVATE ips4o)

A minimal working example:

#include "ips4o.hpp"

// sort sequentially
ips4o::sort(begin, end[, comparator]);

// sort in parallel (uses OpenMP if available, std::thread otherwise)
ips4o::parallel::sort(begin, end[, comparator]);

The parallel version of IPS⁴o requires 16-byte atomic compare-and-exchange instructions to run the fastest. Most CPUs and compilers support 16-byte compare-and-exchange instructions nowadays. If the CPU in question does so, IPS⁴o uses 16-byte compare-and-exchange instructions when you set your CPU correctly (e.g., -march=native) or when you enable the instructions explicitly (-mcx16). In this case, you also have to link against GCC's libatomic (-latomic). Otherwise, we emulate some 16-byte compare-and-exchange instructions with locks which may slightly mitigate the performance of IPS⁴o.

If you use the CMake example shown above, we automatically optimize IPS⁴o for the native CPU (e.g., -march=native). You can disable the CMake property IPS4O_OPTIMIZE_FOR_NATIVE to avoid native optimization and you can enable the CMake property IPS4O_USE_MCX16 if you compile with GCC or Clang to enable 16-byte compare-and-exchange instructions explicitly.

IPS⁴o uses C++ threads if not specified otherwise. If you prefer OpenMP threads, you need to enable OpenMP threads, e.g., enable the CMake property IPS4O_USE_OPENMP or add OpenMP to your target. If you enable the CMake property DISABLE_IPS4O_PARALLEL, most of the parallel code will not be compiled and no parallel libraries will be linked. Otherwise, CMake automatically enables C++ threads (e.g., -pthread) and links against TBB and GCC's libatomic. (Only when you compile your code for 16-byte compare-and-exchange instructions you need libatomic.) Thus, you need the Thread Building Blocks (TBB) library to compile and execute the parallel version of IPS⁴o. We search for TBB with find_package(TBB REQUIRED). If you want to execute IPS⁴o in parallel but your TBB library is not accessible via find_package(TBB REQUIRED), you can still compile IPS⁴o with parallel support. Just enable the CMake property DISABLE_IPS4O_PARALLEL, enable C++ threads for your own target and link your own target against your TBB library (and also link your target against libatomic if you want 16-byte atomic compare-and-exchange instruction support).

If you do not set a CMake build type, we use the build type Release which disables debugging (e.g., -DNDEBUG) and enables optimizations (e.g., -O3).

Currently, the code does not compile on Windows.

Licensing

IPS⁴o is free software provided under the BSD 2-Clause License described in the LICENSE file. If you use this implementation of IPS⁴o in an academic setting please cite the paper Engineering In-place (Shared-memory) Sorting Algorithms using the BibTeX entry

@misc{axtmann2020engineering,
  title =	 {Engineering In-place (Shared-memory) Sorting Algorithms},
  author =	 {Michael Axtmann and Sascha Witt and Daniel Ferizovic and Peter Sanders},
  howpublished = {Computing Research Repository (CoRR)},
  year =	 {Sept. 2020},
  archivePrefix ={arXiv},
  eprint =	 {2009.13569},
}
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022