Official Pytorch implementation of C3-GAN

Related tags

Deep Learningc3-gan
Overview

Official pytorch implemenation of C3-GAN


Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper]

Authors: Yunji Kim, Jung-Woo Ha

Abstract

Unsupervised fine-grained class clustering is practical yet challenging task due to the difficulty of feature representations learning of subtle object details. We introduce C3-GAN, a method that leverages the categorical inference power of InfoGAN by applying contrastive learning. We aim to learn feature representations that encourage the data to form distinct cluster boundaries in the embedding space, while also maximizing the mutual information between the latent code and its observation. Our approach is to train the discriminator, which is used for inferring clusters, to optimize the contrastive loss, where the image-latent pairs that maximize the mutual information are considered as positive pairs and the rest as negative pairs. Specifically, we map the input of the generator, which was sampled from the categorical distribution, to the embedding space of the discriminator and let them act as a cluster centroid. In this way, C3-GAN achieved to learn a clustering-friendly embedding space where each cluster is distinctively separable. Experimental results show that C3-GAN achieved state-of-the-art clustering performance on four fine-grained benchmark datasets, while also alleviating the mode collapse phenomenon.


I. To do list before you run the code

The initial code is optimized for CUB dataset. πŸ¦‰ 🦜 🦒 πŸ¦… πŸ¦† You may have to adjust few things for running this code on another datasets. Please refer to descriptions below.

β€» Hyperparameters setting

You can adjust various hyperparemeters' values such as the number of clusters, the degree of perturbation, etc. in config.py file.

β€» Annotate data for evaluation

It is required to annotate each image with its ground truth class label for evaluating Accuracy (ACC) and Normalized Mutual Information (NMI) scores. The class information should be represented in the int format. Please check out sample files in data/cub. You may also have to adjust datasets.py file depending on where you saved the image files and how you made the annotation files.


II. Train

If you have set every arguments in config.py file, the training code would be run with the simple command below.

python train.py

β€» Pre-trained model for CUB

For loading the parameters of the pre-trained model, please adjust the value of cfg.OVER to '2' and set cfg.MODEL_PATH to wherever you saved the file.


III. Results

β€» Fine-grained Class Clustering Results

Acc NMI
Bird Car Dog Flower Bird Car Dog Flower
IIC 7.4 4.9 5.0 8.7 0.36 0.27 0.18 0.24
SimCLR + k-Means 8.4 6.7 6.8 12.5 0.40 0.33 0.19 0.29
InfoGAN 8.6 6.5 6.4 23.2 0.39 0.31 0.21 0.44
FineGAN 6.9 6.8 6.0 8.1 0.37 0.33 0.22 0.24
MixNMatch 10.2 7.3 10.3 39.0 0.41 0.34 0.30 0.57
SCAN 11.9 8.8 12.3 56.5 0.45 0.38 0.35 0.77
C3-GAN 27.6 14.1 17.9 67.8 0.53 0.41 0.36 0.67

β€» Image Generation Results

Conditional Generation

Images synthesized with the predicted cluster indices of given real images.

Random Generation

Images synthesized by random value sampling of the latent code c and noise variable z.


β€»β€» bibtex

@article{kim2021c3gan,
  title={Contrastive Fine-grained Class Clustering via Generative Adversarial Networks},
  author={Kim, Yunji and Ha, Jung-Woo},
  year={2021},
  booktitle = {arXiv}
}

β€»β€» Acknowledgement

This code was developed from the released source code of FineGAN: Unsupervised Hierarchical Disentanglement for Fine-grained Object Generation and Discovery.

License

Copyright 2022-present NAVER Corp.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning β€œStudy hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022