Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

Overview

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech

arXiv | GitHub Stars | downloads | Hugging Face | 中文文档

This repository is the official PyTorch implementation of our IJCAI-2022 paper, in which we propose SyntaSpeech for syntax-aware non-autoregressive Text-to-Speech.



Our SyntaSpeech is built on the basis of PortaSpeech (NeurIPS 2021) with three new features:

  1. We propose Syntactic Graph Builder (Sec. 3.1) and Syntactic Graph Encoder (Sec. 3.2), which is proved to be an effective unit to extract syntactic features to improve the prosody modeling and duration accuracy of TTS model.
  2. We introduce Multi-Length Adversarial Training (Sec. 3.3), which could replace the flow-based post-net in PortaSpeech, speeding up the inference time and improving the audio quality naturalness.
  3. We support three datasets: LJSpeech (single-speaker English dataset), Biaobei (single-speaker Chinese dataset) , and LibriTTS (multi-speaker English dataset).

Environments

conda create -n synta python=3.7
condac activate synta
pip install -U pip
pip install Cython numpy==1.19.1
pip install torch==1.9.0 
pip install -r requirements.txt
# install dgl for graph neural network, dgl-cu102 supports rtx2080, dgl-cu113 support rtx3090
pip install dgl-cu102 dglgo -f https://data.dgl.ai/wheels/repo.html 
sudo apt install -y sox libsox-fmt-mp3
bash mfa_usr/install_mfa.sh # install force alignment tools

Run SyntaSpeech!

Please follow the following steps to run this repo.

1. Preparation

Data Preparation

You can directly use our binarized datasets for LJSpeech and Biaobei. Download them and unzip them into the data/binary/ folder.

As for LibriTTS, you can download the raw datasets and process them with our data_gen modules. Detailed instructions can be found in dosc/prepare_data.

Vocoder Preparation

We provide the pre-trained model of vocoders for three datasets. Specifically, Hifi-GAN for LJSpeech and Biaobei, ParallelWaveGAN for LibriTTS. Download and unzip them into the checkpoints/ folder.

2. Training Example

Then you can train SyntaSpeech in the three datasets.

cd <the root_dir of your SyntaSpeech folder>
export PYTHONPATH=./
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset # training in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset # training in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset # training in LibriTTS

3. Tensorboard

tensorboard --logdir=checkpoints/lj_synta
tensorboard --logdir=checkpoints/biaobei_synta
tensorboard --logdir=checkpoints/libritts_synta

4. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset --infer # inference in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset --infer # inference in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset ---infer # inference in LibriTTS

Audio Demos

Audio samples in the paper can be found in our demo page.

We also provide HuggingFace Demo Page for LJSpeech. Try your interesting sentences there!

Citation

@article{ye2022syntaspeech,
  title={SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech},
  author={Ye, Zhenhui and Zhao, Zhou and Ren, Yi and Wu, Fei},
  journal={arXiv preprint arXiv:2204.11792},
  year={2022}
}

Acknowledgements

Our codes are based on the following repos:

Comments
  • pinyin preprocess problem

    pinyin preprocess problem

    005804 你当#1我傻啊#3?脑子#1那么大#2怎么#1塞进去#4? ni3 dang1 wo2 sha3 a5 nao3 zi5 na4 me5 da4 zen3 me5 sai1 jin4 qu4

    txt_struct=[['', ['']], ['你', ['n', 'i3']], ['当', ['d', 'ang1']], ['我', ['uo3']], ['傻', ['sh', 'a3']], ['啊', ['a', '?', 'n', 'ao3']], ['?', ['z', 'i']], ['脑', ['n', 'a4']], ['子', ['m', 'e']], ['那', ['d', 'a4']], ['么', ['z', 'en3']], ['大', ['m', 'e']], ['怎', ['s', 'ai1']], ['么', ['j', 'in4']], ['塞', ['q', 'v4', '?']], ['进', []], ['去', []], ['?', []], ['', ['']]]

    ph_gb_word=['', 'n_i3', 'd_ang1', 'uo3', 'sh_a3', 'a_?n_ao3', 'z_i', 'n_a4', 'm_e', 'd_a4', 'z_en3', 'm_e', 's_ai1', 'j_in4', 'q_v4?', '', '', '', '']

    what is 'a_?_n_ao3'

    in the mfa_dict it appears ch_a1_d_ou1 ,a_?_n_ao3 and so on

    opened by windowxiaoming 2
  • discriminator output['y_c'] never used

    discriminator output['y_c'] never used

    Discriminator's output['y_c'] never used, and never calculated in discriminator forward func. What does this variable mean? https://github.com/yerfor/SyntaSpeech/blob/5b07439633a3e714d2a6759ea4097eb36d6cd99a/tasks/tts/synta.py#L81

    opened by mayfool 2
  • A question of KL divergence calculation

    A question of KL divergence calculation

    In modules/tts/portaspeech/fvae.py, SyntaFVAE compute loss_kl (line 121) , Can someone help explain why loss_kl = ((logqx - logpx) * nonpadding_sqz).sum() / nonpadding_sqz.sum() / logqx.shape[1],I think loss_kl should be compute by loss_kl = logqx.exp()*(logqx - logpx) I would be very grateful if you could reply to me!

    opened by JiaYK 2
  • mfa for multi speaker.

    mfa for multi speaker.

    In the code, group MFA inputs for better parallelism. For multi speaker, it maybe go wrong. For input g_uang3 zh_ou1 n_v3 d_a4 x_ve2 sh_eng1 d_eng1 sh_an1 sh_i1 l_ian2 s_i4 t_ian1 j_ing3 f_ang1 zh_ao3 d_ao4 i2 s_i4 n_v3 sh_i1. The TexGrid is

    	item [1]:
    		class = "IntervalTier"
    		name = "words"
    		xmin = 0.0
    		xmax = 9.4444
    		intervals: size = 56
    			intervals [1]:
    				xmin = 0
    				xmax = 0.5700000000000001
    				text = ""
    			intervals [2]:
    				xmin = 0.5700000000000001
    				xmax = 0.61
    				text = "eng"
    			intervals [3]:
    				xmin = 0.61
    				xmax = 0.79
    				text = "s_an1"
    			intervals [4]:
    				xmin = 0.79
    				xmax = 0.89
    				text = "eng"
    			intervals [5]:
    				xmin = 0.89
    				xmax = 1.06
    				text = "i1"
    			intervals [6]:
    				xmin = 1.06
    				xmax = 1.24
    				text = "eng"
    			intervals [7]:
    				xmin = 1.24
    				xmax = 1.3
    				text = ""
    			intervals [8]:
    				xmin = 1.3
    				xmax = 1.36
    				text = "s_an1"
    			intervals [9]:
    				xmin = 1.36
    				xmax = 1.42
    				text = ""
    			intervals [10]:
    				xmin = 1.42
    				xmax = 1.49
    				text = "eng"
    			intervals [11]:
    				xmin = 1.49
    				xmax = 1.67
    				text = "s_i4"
    			intervals [12]:
    				xmin = 1.67
    				xmax = 1.78
    				text = "eng"
    			intervals [13]:
    				xmin = 1.78
    				xmax = 1.91
    				text = ""
    			intervals [14]:
    				xmin = 1.91
    				xmax = 1.96
    				text = "er4"
    			intervals [15]:
    				xmin = 1.96
    				xmax = 2.06
    				text = "eng"
    			intervals [16]:
    				xmin = 2.06
    				xmax = 2.19
    				text = ""
    			intervals [17]:
    				xmin = 2.19
    				xmax = 2.35
    				text = "i1"
    			intervals [18]:
    				xmin = 2.35
    				xmax = 2.53
    				text = "eng"
    			intervals [19]:
    				xmin = 2.53
    				xmax = 3.03
    				text = "i1"
    			intervals [20]:
    				xmin = 3.03
    				xmax = 3.42
    				text = "eng"
    			intervals [21]:
    				xmin = 3.42
    				xmax = 3.48
    				text = "i1"
    			intervals [22]:
    				xmin = 3.48
    				xmax = 3.6
    				text = ""
    			intervals [23]:
    				xmin = 3.6
    				xmax = 3.64
    				text = "eng"
    			intervals [24]:
    				xmin = 3.64
    				xmax = 3.86
    				text = "i1"
    			intervals [25]:
    				xmin = 3.86
    				xmax = 3.99
    				text = "eng"
    			intervals [26]:
    				xmin = 3.99
    				xmax = 4.59
    				text = ""
    			intervals [27]:
    				xmin = 4.59
    				xmax = 4.869999999999999
    				text = "er4"
    			intervals [28]:
    				xmin = 4.869999999999999
    				xmax = 4.9799999999999995
    				text = "eng"
    			intervals [29]:
    				xmin = 4.9799999999999995
    				xmax = 5.1899999999999995
    				text = "s_i4"
    			intervals [30]:
    				xmin = 5.1899999999999995
    				xmax = 5.34
    				text = ""
    			intervals [31]:
    				xmin = 5.34
    				xmax = 5.43
    				text = "eng"
    			intervals [32]:
    				xmin = 5.43
    				xmax = 5.6
    				text = ""
    			intervals [33]:
    				xmin = 5.6
    				xmax = 5.76
    				text = "i1"
    			intervals [34]:
    				xmin = 5.76
    				xmax = 6.279999999999999
    				text = "eng"
    			intervals [35]:
    				xmin = 6.279999999999999
    				xmax = 6.359999999999999
    				text = "s_an1"
    			intervals [36]:
    				xmin = 6.359999999999999
    				xmax = 6.47
    				text = ""
    			intervals [37]:
    				xmin = 6.47
    				xmax = 6.6
    				text = "eng"
    			intervals [38]:
    				xmin = 6.6
    				xmax = 6.9399999999999995
    				text = "i1"
    			intervals [39]:
    				xmin = 6.9399999999999995
    				xmax = 7.039999999999999
    				text = "eng"
    			intervals [40]:
    				xmin = 7.039999999999999
    				xmax = 7.289999999999999
    				text = "s_an1"
    			intervals [41]:
    				xmin = 7.289999999999999
    				xmax = 7.369999999999999
    				text = "eng"
    			intervals [42]:
    				xmin = 7.369999999999999
    				xmax = 7.6
    				text = "s_i4"
    			intervals [43]:
    				xmin = 7.6
    				xmax = 7.699999999999999
    				text = "eng"
    			intervals [44]:
    				xmin = 7.699999999999999
    				xmax = 7.869999999999999
    				text = ""
    			intervals [45]:
    				xmin = 7.869999999999999
    				xmax = 8.049999999999999
    				text = "er4"
    			intervals [46]:
    				xmin = 8.049999999999999
    				xmax = 8.26
    				text = ""
    			intervals [47]:
    				xmin = 8.26
    				xmax = 8.299999999999999
    				text = "eng"
    			intervals [48]:
    				xmin = 8.299999999999999
    				xmax = 8.36
    				text = "s_i4"
    			intervals [49]:
    				xmin = 8.36
    				xmax = 8.389999999999999
    				text = ""
    			intervals [50]:
    				xmin = 8.389999999999999
    				xmax = 8.42
    				text = "eng"
    			intervals [51]:
    				xmin = 8.42
    				xmax = 8.45
    				text = ""
    			intervals [52]:
    				xmin = 8.45
    				xmax = 8.59
    				text = "s_an1"
    			intervals [53]:
    				xmin = 8.59
    				xmax = 8.83
    				text = ""
    			intervals [54]:
    				xmin = 8.83
    				xmax = 9.1
    				text = "eng"
    			intervals [55]:
    				xmin = 9.1
    				xmax = 9.44
    				text = "i1"
    			intervals [56]:
    				xmin = 9.44
    				xmax = 9.4444
    				text = ""
    
    opened by leon2milan 2
  • Problem with DDP

    Problem with DDP

    Hello, I have experimented on your excellent job with this repo. But I found the ddp is not effective. I wonder if the way I used is wrong?

    CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node 3 tasks/run.py --config //fs.yaml --exp_name fs_test_demo --reset

    opened by zhazl 0
Releases(v1.0.0)
Owner
Zhenhui YE
I am currently a second-year computer science Ph.D student at Zhejiang University, working on deep learning and reinforcement learning.
Zhenhui YE
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022