Semi-supervised semantic segmentation needs strong, varied perturbations

Overview

Semi-supervised semantic segmentation using CutMix and Colour Augmentation

Implementations of our papers:

Licensed under MIT license.

Colour augmentation

Please see our new paper for a full discussion, but a summary of our findings can be found in our [colour augmentation](Colour augmentation.ipynb) Jupyter notebook.

Requirements

We provide an environment.yml file that can be used to re-create a conda environment that provides the required packages:

conda env create -f environment.yml

Then activate with:

conda activate cutmix_semisup_seg

(note: this will not install the library needed to use the PSPNet architecture; see below)

In general we need:

  • Python >= 3.6
  • PyTorch >= 1.4
  • torchvision 0.5
  • OpenCV
  • Pillow
  • Scikit-image
  • Scikit-learn
  • click
  • tqdm
  • Jupyter notebook for the notebooks
  • numpy 1.18

Requirements for PSPNet

To use the PSPNet architecture (see Pyramid Scene Parsing Network by Zhao et al.), you will need to install the logits-from_models branch of https://github.com/Britefury/semantic-segmentation-pytorch:

pip install git+https://github.com/Britefury/[email protected]

Datasets

You need to:

  1. Download/acquire the datsets
  2. Write the config file semantic_segmentation.cfg giving their paths
  3. Convert them if necessary; the CamVid, Cityscapes and ISIC 2017 datasets must be converted to a ZIP-based format prior to use. You must run the provided conversion utilities to create these ZIP files.

Dataset preparation instructions can be found here.

Running the experiments

We provide four programs for running experiments:

  • train_seg_semisup_mask_mt.py: mask driven consistency loss (the main experiment)
  • train_seg_semisup_aug_mt.py: augmentation driven consistency loss; used to attempt to replicate the ISIC 2017 baselines of Li et al.
  • train_seg_semisup_ict.py: Interpolation Consistency Training; a baseline for contrast with our main approach
  • train_seg_semisup_vat_mt.py: Virtual Adversarial Training adapted for semantic segmentation

They can be configured via command line arguments that are described here.

Shell scripts

To replicate our results, we provide shell scripts to run our experiments.

Cityscapes
> sh run_cityscapes_experiments.sh <run> <split_rng_seed>

where <run> is the name of the run and <split_rng_seed> is an integer RNG seed used to select the supervised samples. Please see the comments at the top of run_cityscapes_experiments.sh for further explanation.

To re-create the 5 runs we used for our experiments:

> sh run_cityscapes_experiments.sh 01 12345
> sh run_cityscapes_experiments.sh 02 23456
> sh run_cityscapes_experiments.sh 03 34567
> sh run_cityscapes_experiments.sh 04 45678
> sh run_cityscapes_experiments.sh 05 56789
Pascal VOC 2012 (augmented)
> sh run_pascal_aug_experiments.sh <n_supervised> <n_supervised_txt>

where <n_supervised> is the number of supervised samples and <n_supervised_txt> is that number as text. Please see the comments at the top of run_pascal_aug_experiments.sh for further explanation.

We use the same data split as Mittal et al. It is stored in data/splits/pascal_aug/split_0.pkl that is included in the repo.

Pascal VOC 2012 (augmented) with DeepLab v3+
> sh run_pascal_aug_deeplab3plus_experiments.sh <n_supervised> <n_supervised_txt>
ISIC 2017 Segmentation
> sh run_isic2017_experiments.sh <run> <split_rng_seed>

where <run> is the name of the run and <split_rng_seed> is an integer RNG seed used to select the supervised samples. Please see the comments at the top of run_isic2017_experiments.sh for further explanation.

To re-create the 5 runs we used for our experiments:

> sh run_isic2017_experiments.sh 01 12345
> sh run_isic2017_experiments.sh 02 23456
> sh run_isic2017_experiments.sh 07 78901
> sh run_isic2017_experiments.sh 08 89012
> sh run_isic2017_experiments.sh 09 90123

In early experiments, we test 10 seeds and selected the middle 5 when ranked in terms of performance, hence the specific seed choice.

Exploring the input data distribution present in semantic segmentation problems

Cluster assumption

First we examine the input data distribution presented by semantic segmentation problems with a view to determining if the low density separation assumption holds, in the notebook Semantic segmentation input data distribution.ipynb This notebook also contains the code used to generate the images from Figure 1 in the paper.

Inter-class and intra-class variance

Secondly we examine the inter-class and intra-class distance (as a proxy for inter-class and intra-class variance) in the notebook Plot inter-class and intra-class distances from files.ipynb

Note that running the second notebook requires that you generate some data files using the intra_inter_class_patch_dist.py program.

Toy 2D experiments

The toy 2D experiments used to produce Figure 3 in the paper can be run using the toy2d_train.py program, which is documented here.

You can re-create the toy 2D experiments by running the run_toy2d_experiments.sh shell script:

> sh run_toy2d_experiments.sh <run>
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022