Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Overview

Continuous Speech Separation with Conformer

Introduction

We examine the use of the Conformer architecture for continuous speech separation. Conformer allows the separation model to efficiently capture both local and global context information, which is helpful for speech separation. Experimental results using the LibriCSS dataset show that the Conformer separation model achieves state of the art results for both single-channel and multi-channel settings.

For a detailed description and experimental results, please refer to our paper: Continuous Speech Separation with Conformer (Accepted by ICASSP 2021).

Environment

python 3.6.9, torch 1.7.1

Get Started

  1. Download the overlapped speech of LibriCSS dataset.

    wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1PdloA-V8HGxkRu9MnT35_civpc3YXJsT' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1PdloA-V8HGxkRu9MnT35_civpc3YXJsT" -O overlapped_speech.zip && rm -rf /tmp/cookies.txt && unzip overlapped_speech.zip && rm overlapped_speech.zip
  2. Download the Conformer separation models.

    wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1OlTbEvxYUoqWIHfeAXCftL9srbWUo4I1' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1OlTbEvxYUoqWIHfeAXCftL9srbWUo4I1" -O checkpoints.zip && rm -rf /tmp/cookies.txt && unzip checkpoints.zip && rm checkpoints.zip
  3. Run the separation.

    3.1 Single-channel separation

    export MODEL_NAME=1ch_conformer_base
    python3 separate.py \
        --checkpoint checkpoints/$MODEL_NAME \
        --mix-scp utils/overlapped_speech_1ch.scp \
        --dump-dir separated_speech/monaural/utterances_with_$MODEL_NAME \
        --device-id 0 \
        --num_spks 2

    The separated speech can be found in the directory 'separated_speech/monaural/utterances_with_$MODEL_NAME'

    3.2 Seven-channel separation

    export MODEL_NAME=conformer_base
    python3 separate.py \
        --checkpoint checkpoints/$MODEL_NAME \
        --mix-scp utils/overlapped_speech_7ch.scp \
        --dump-dir separated_speech/7ch/utterances_with_$MODEL_NAME \
        --device-id 0 \
        --num_spks 2 \
        --mvdr True

    The separated speech can be found in the directory 'separated_speech/7ch/utterances_with_$MODEL_NAME'

Citation

If you find our work useful, please cite our paper:

@inproceedings{CSS_with_Conformer,
  title={Continuous speech separation with conformer},
  author={Chen, Sanyuan and Wu, Yu and Chen, Zhuo and Wu, Jian and Li, Jinyu and Yoshioka, Takuya and Wang, Chengyi and Liu, Shujie and Zhou, Ming},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5749--5753},
  year={2021},
  organization={IEEE}
}
Owner
Sanyuan Chen (陈三元)
Sanyuan Chen (陈三元)
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022