Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Overview

Continuous Speech Separation with Conformer

Introduction

We examine the use of the Conformer architecture for continuous speech separation. Conformer allows the separation model to efficiently capture both local and global context information, which is helpful for speech separation. Experimental results using the LibriCSS dataset show that the Conformer separation model achieves state of the art results for both single-channel and multi-channel settings.

For a detailed description and experimental results, please refer to our paper: Continuous Speech Separation with Conformer (Accepted by ICASSP 2021).

Environment

python 3.6.9, torch 1.7.1

Get Started

  1. Download the overlapped speech of LibriCSS dataset.

    wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1PdloA-V8HGxkRu9MnT35_civpc3YXJsT' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1PdloA-V8HGxkRu9MnT35_civpc3YXJsT" -O overlapped_speech.zip && rm -rf /tmp/cookies.txt && unzip overlapped_speech.zip && rm overlapped_speech.zip
  2. Download the Conformer separation models.

    wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1OlTbEvxYUoqWIHfeAXCftL9srbWUo4I1' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1OlTbEvxYUoqWIHfeAXCftL9srbWUo4I1" -O checkpoints.zip && rm -rf /tmp/cookies.txt && unzip checkpoints.zip && rm checkpoints.zip
  3. Run the separation.

    3.1 Single-channel separation

    export MODEL_NAME=1ch_conformer_base
    python3 separate.py \
        --checkpoint checkpoints/$MODEL_NAME \
        --mix-scp utils/overlapped_speech_1ch.scp \
        --dump-dir separated_speech/monaural/utterances_with_$MODEL_NAME \
        --device-id 0 \
        --num_spks 2

    The separated speech can be found in the directory 'separated_speech/monaural/utterances_with_$MODEL_NAME'

    3.2 Seven-channel separation

    export MODEL_NAME=conformer_base
    python3 separate.py \
        --checkpoint checkpoints/$MODEL_NAME \
        --mix-scp utils/overlapped_speech_7ch.scp \
        --dump-dir separated_speech/7ch/utterances_with_$MODEL_NAME \
        --device-id 0 \
        --num_spks 2 \
        --mvdr True

    The separated speech can be found in the directory 'separated_speech/7ch/utterances_with_$MODEL_NAME'

Citation

If you find our work useful, please cite our paper:

@inproceedings{CSS_with_Conformer,
  title={Continuous speech separation with conformer},
  author={Chen, Sanyuan and Wu, Yu and Chen, Zhuo and Wu, Jian and Li, Jinyu and Yoshioka, Takuya and Wang, Chengyi and Liu, Shujie and Zhou, Ming},
  booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5749--5753},
  year={2021},
  organization={IEEE}
}
Owner
Sanyuan Chen (陈三元)
Sanyuan Chen (陈三元)
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023