TensorFlow implementation of Deep Reinforcement Learning papers

Overview

Deep Reinforcement Learning in TensorFlow

TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains:

[1] Playing Atari with Deep Reinforcement Learning
[2] Human-Level Control through Deep Reinforcement Learning
[3] Deep Reinforcement Learning with Double Q-learning
[4] Dueling Network Architectures for Deep Reinforcement Learning
[5] Prioritized Experience Replay (in progress)
[6] Deep Exploration via Bootstrapped DQN (in progress)
[7] Asynchronous Methods for Deep Reinforcement Learning (in progress)
[8] Continuous Deep q-Learning with Model-based Acceleration (in progress)

Requirements

Usage

First, install prerequisites with:

$ pip install -U 'gym[all]' tqdm scipy

Don't forget to also install the latest TensorFlow. Also note that you need to install the dependences of doom-py which is required by gym[all]

Train with DQN model described in [1] without gpu:

$ python main.py --network_header_type=nips --env_name=Breakout-v0 --use_gpu=False

Train with DQN model described in [2]:

$ python main.py --network_header_type=nature --env_name=Breakout-v0

Train with Double DQN model described in [3]:

$ python main.py --double_q=True --env_name=Breakout-v0

Train with Deuling network with Double Q-learning described in [4]:

$ python main.py --double_q=True --network_output_type=dueling --env_name=Breakout-v0

Train with MLP model described in [4] with corridor environment (useful for debugging):

$ python main.py --network_header_type=mlp --network_output_type=normal --observation_dims='[16]' --env_name=CorridorSmall-v5 --t_learn_start=0.1 --learning_rate_decay_step=0.1 --history_length=1 --n_action_repeat=1 --t_ep_end=10 --display=True --learning_rate=0.025 --learning_rate_minimum=0.0025
$ python main.py --network_header_type=mlp --network_output_type=normal --double_q=True --observation_dims='[16]' --env_name=CorridorSmall-v5 --t_learn_start=0.1 --learning_rate_decay_step=0.1 --history_length=1 --n_action_repeat=1 --t_ep_end=10 --display=True --learning_rate=0.025 --learning_rate_minimum=0.0025
$ python main.py --network_header_type=mlp --network_output_type=dueling --observation_dims='[16]' --env_name=CorridorSmall-v5 --t_learn_start=0.1 --learning_rate_decay_step=0.1 --history_length=1 --n_action_repeat=1 --t_ep_end=10 --display=True --learning_rate=0.025 --learning_rate_minimum=0.0025
$ python main.py --network_header_type=mlp --network_output_type=dueling --double_q=True --observation_dims='[16]' --env_name=CorridorSmall-v5 --t_learn_start=0.1 --learning_rate_decay_step=0.1 --history_length=1 --n_action_repeat=1 --t_ep_end=10 --display=True --learning_rate=0.025 --learning_rate_minimum=0.0025

Results

Result of Corridor-v5 in [4] for DQN (purple), DDQN (red), Dueling DQN (green), Dueling DDQN (blue).

model

Result of `Breakout-v0' for DQN without frame-skip (white-blue), DQN with frame-skip (light purple), Dueling DDQN (dark blue).

model

The hyperparameters and gradient clipping are not implemented as it is as [4].

References

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022