Spectral Tensor Train Parameterization of Deep Learning Layers

Overview

Spectral Tensor Train Parameterization of Deep Learning Layers

This repository is the official implementation of our AISTATS 2021 paper titled "Spectral Tensor Train Parameterization of Deep Learning Layers" by Anton Obukhov, Maxim Rakhuba, Alexander Liniger, Zhiwu Huang, Stamatios Georgoulis, Dengxin Dai, and Luc Van Gool [arXiv] [PMLR].

It demonstrates how to perform low-rank neural network reparameterization and its stable training in a compressed form. The code provides all experiments (GAN and Image Classification) from the paper (see configs/aistats21 directory) with the following types of reparameterizations: SNGAN, SRGAN, SVDP, or STTP.

STTP teaser

Installation

All experiments can be reproduced on a single 11Gb GPU.

Clone the repository, then create a new virtual environment, and install python dependencies into it:

python3 -m venv venv_sttp
source venv_sttp/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt

In case of problems with generic requirements, fall back to requirements_reproducibility.txt.

Logging

The code performs logging to the console, tensorboard file in the experiment log directory, and also Weights and Biases (wandb). Upon the first run, please enter your wandb credentials, which can be obtained by registering a free account with the service.

Creating Environment Config

The training script allows specifying multiple yml config files, which will be concatenated during execution. This is done to separate experiment configs from environment configs. To start running experiments, create your own config file with a few environment settings, similar to configs/env_lsf.yml. Generally, you only need to update paths; see other fields explained in the config reference.

Training

Choose a preconfigured experiment from any of the configs/aistats21 directories, or compose your own config using the config reference, and run the following command:

CUDA_VISIBLE_DEVICES=0 python -m src.train --cfg configs/env_yours.yml --cfg configs/experiment.yml

Poster

STTP poster

Citation

Please cite our work if you found it useful:

@InProceedings{obukhov2021spectral,
  title={Spectral Tensor Train Parameterization of Deep Learning Layers},
  author={Obukhov, Anton and Rakhuba, Maxim and Liniger, Alexander and Huang, Zhiwu and Georgoulis, Stamatios and Dai, Dengxin and Van Gool, Luc},
  booktitle={Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages={3547--3555},
  year={2021},
  editor={Banerjee, Arindam and Fukumizu, Kenji},
  volume={130},
  series={Proceedings of Machine Learning Research},
  month={13--15 Apr},
  publisher={PMLR},
  pdf={http://proceedings.mlr.press/v130/obukhov21a/obukhov21a.pdf},
  url={http://proceedings.mlr.press/v130/obukhov21a.html}
}

License

This software is released under a CC-BY-NC 4.0 license, which allows personal and research use only. For a commercial license, please contact the authors. You can view a license summary here.

Portions of source code taken from external sources are annotated with links to original files and their corresponding licenses.

Acknowledgements

This work was supported by Toyota Motor Europe and was carried out at the TRACE Lab at ETH Zurich (Toyota Research on Automated Cars in Europe - Zurich).

Owner
Anton Obukhov
CV+ML PhD student with industrial past. Every fork is for a reason.
Anton Obukhov
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022