Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

Overview

VFedPCA+VFedAKPCA

This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework.

Despite enormous research interest and rapid application of federated learning (FL) to various areas, existing studies mostly focus on supervised federated learning under the horizontally partitioned local dataset setting. This paper will study the unsupervised FL under the vertically partitioned dataset setting.

Server-Clients Architecture

Server-Clients Architecture
Figure: Server-Clients Architecture

Master Branch

VFedPCA+VFedAKPCA                    
└── case                        // Case Studies
    └── figs                    // Save experimental results' figures in '.eps' / '.png' format 
        ├── img_name*.eps              
        └── img_name*.png           
    ├── main.py          
    ├── model.py              
    └── utils.py                 
├── dataset                     // Put downloaded dataset in this folder
└── figs                        // Save experimental results' figures in '.eps' / '.png' format
    ├── img_name*.eps              
    └── img_name*.png           
├── README.md               
├── main.py                     // Experiment on Structured Dataset
├── model.py                   
└── utils.py                     

Environments

  • python = 3.8.8
  • numpy = 1.20.1
  • pandas = 1.2.4
  • scikit-learn = 0.24.1
  • scipy = 1.6.2
  • imageio = 2.9.0

Prepare Dataset

To demonstrate the superiority of our method, we utilized FIVE types of real-world datasets coming with distinct nature.

  1. structured datasets from different domains;
  2. medical image dataset;
  3. face image dataset;
  4. gait image dataset;
  5. person re-identification image dataset.

Step 1: Download Dataset from the Google Drive URL

Step 2: Specify Dataset Path by Command Argument

$ python main.py --data_path="./dataset/xxx"

Experiments

We conduct extensive experiments on structured datasets to exmaines the effect of feature size, local iterations, warm-start power iterations, and weight scaling method on structed datasets. Furthermore, we investigate some case studies with image dataset to demonstrate the effectiveness of VFedPCA and VFedAKPCA.

A. Experiment on Structured Dataset

First, you need to choose the dataset.

python main.py --data_path './dataset/College.csv' --batch_size 160 

Then, you only need to set different flag, p_list, iter_list and sampler_num to exmaines the effect of feature size, local iterations, warm-start power iterations, and weight scaling method on structed datasets. The example is as follows.

flag ='clients'
p_list = [3, 5, 10]         # the number of involved clients
iter_list = [100, 100, 100] # the number of local power iterations
sampler_num = 5

B. Case Studies

python main.py --data_path '../dataset/Image/DeepLesion' /
               --client_num 8 / 
               --iterations 100 / 
               --re_size 512

Citation

@inproceedings{
title = {{Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data}},
author = {Yiu-ming Cheung, Fellow, IEEE, Feng Yu, and Jian Lou},
year = 2021
}
Owner
John
My research interests are machine learning and recommender systems.
John
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022