Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

Overview

MetaMorph: Learning Universal Controllers with Transformers

This is the code for the paper

MetaMorph: Learning Universal Controllers with Transformers
Agrim Gupta, Linxi Fan, Surya Ganguli, Fei-Fei Li

Multiple domains like vision, natural language, and audio are witnessing tremendous progress by leveraging Transformers for large scale pre-training followed by task specific fine tuning. In contrast, in robotics we primarily train a single robot for a single task. However, modular robot systems now allow for the flexible combination of general-purpose building blocks into task optimized morphologies. However, given the exponentially large number of possible robot morphologies, training a controller for each new design is impractical. In this work, we propose MetaMorph, a Transformer based approach to learn a universal controller over a modular robot design space. MetaMorph is based on the insight that robot morphology is just another modality on which we can condition the output of a Transformer. Through extensive experiments we demonstrate that large scale pre-training on a variety of robot morphologies results in policies with combinatorial generalization capabilities, including zero shot generalization to unseen robot morphologies. We further demonstrate that our pre-trained policy can be used for sample-efficient transfer to completely new robot morphologies and tasks.

Code Structure

The code consists of two main components:

  1. Metamorph: Code for joint pre-training of different robots.
  2. Environments and evaluation tasks: Three pre-training environments and two evaluation environments.

Benchmark

We also provide Unimal-100 benchmark. The benchmark consists of 100 train morphologies, 1600 morphologies with dynamics variations, 800 morphologies with kinematics variations, and 100 test morphologies.

# Install gdown
pip install gdown
# Download data
gdown 1LyKYTCevnqWrDle1LTBMlBF58RmCjSzM
# Unzip
unzip unimals_100.zip

Setup

We provide Dockerfile for easy installation and development. If you prefer to work without docker please take a look at Dockerfile and ensure that your local system has all the necessary dependencies installed.

Training

# Build docker container. Ensure that MuJoCo license is present: docker/mjkey.txt
./scripts/build_docker.sh
# Joint pre-training. Please change MOUNT_DIR location inside run_docker_gpu.sh
# Finally ensure that ENV.WALKER_DIR points to benchmark files and is accessible
# from docker.
./scripts/run_docker_gpu.sh python tools/train_ppo.py --cfg ./configs/ft.yaml

The default parameters assume that you are running the code on a machine with atlesat 1 GPU.

Citation

If you find this code useful, please consider citing:

@inproceedings{
    gupta2022metamorph,
    title={MetaMorph: Learning Universal Controllers with Transformers},
    author={Agrim Gupta and Linxi Fan and Surya Ganguli and Li Fei-Fei},
    booktitle={International Conference on Learning Representations},
    year={2022},
    url={https://openreview.net/forum?id=Opmqtk_GvYL}
}

Credit

This codebase would not have been possible without the following amazing open source codebases:

  1. ikostrikov/pytorch-a2c-ppo-acktr-gail
  2. hill-a/stable-baselines
  3. deepmind/dm_control
  4. openai/multi-agent-emergence-environments
Owner
Agrim Gupta
Agrim Gupta
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021