Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Overview

Bootstrap Your Own Latent (BYOL), in Pytorch

PyPI version

Practical implementation of an astoundingly simple method for self-supervised learning that achieves a new state of the art (surpassing SimCLR) without contrastive learning and having to designate negative pairs.

This repository offers a module that one can easily wrap any image-based neural network (residual network, discriminator, policy network) to immediately start benefitting from unlabelled image data.

Update 1: There is now new evidence that batch normalization is key to making this technique work well

Update 2: A new paper has successfully replaced batch norm with group norm + weight standardization, refuting that batch statistics are needed for BYOL to work

Update 3: Finally, we have some analysis for why this works

Yannic Kilcher's excellent explanation

Now go save your organization from having to pay for labels :)

Install

$ pip install byol-pytorch

Usage

Simply plugin your neural network, specifying (1) the image dimensions as well as (2) the name (or index) of the hidden layer, whose output is used as the latent representation used for self-supervised training.

import torch
from byol_pytorch import BYOL
from torchvision import models

resnet = models.resnet50(pretrained=True)

learner = BYOL(
    resnet,
    image_size = 256,
    hidden_layer = 'avgpool'
)

opt = torch.optim.Adam(learner.parameters(), lr=3e-4)

def sample_unlabelled_images():
    return torch.randn(20, 3, 256, 256)

for _ in range(100):
    images = sample_unlabelled_images()
    loss = learner(images)
    opt.zero_grad()
    loss.backward()
    opt.step()
    learner.update_moving_average() # update moving average of target encoder

# save your improved network
torch.save(resnet.state_dict(), './improved-net.pt')

That's pretty much it. After much training, the residual network should now perform better on its downstream supervised tasks.

BYOL → SimSiam

A new paper from Kaiming He suggests that BYOL does not even need the target encoder to be an exponential moving average of the online encoder. I've decided to build in this option so that you can easily use that variant for training, simply by setting the use_momentum flag to False. You will no longer need to invoke update_moving_average if you go this route as shown in the example below.

import torch
from byol_pytorch import BYOL
from torchvision import models

resnet = models.resnet50(pretrained=True)

learner = BYOL(
    resnet,
    image_size = 256,
    hidden_layer = 'avgpool',
    use_momentum = False       # turn off momentum in the target encoder
)

opt = torch.optim.Adam(learner.parameters(), lr=3e-4)

def sample_unlabelled_images():
    return torch.randn(20, 3, 256, 256)

for _ in range(100):
    images = sample_unlabelled_images()
    loss = learner(images)
    opt.zero_grad()
    loss.backward()
    opt.step()

# save your improved network
torch.save(resnet.state_dict(), './improved-net.pt')

Advanced

While the hyperparameters have already been set to what the paper has found optimal, you can change them with extra keyword arguments to the base wrapper class.

learner = BYOL(
    resnet,
    image_size = 256,
    hidden_layer = 'avgpool',
    projection_size = 256,           # the projection size
    projection_hidden_size = 4096,   # the hidden dimension of the MLP for both the projection and prediction
    moving_average_decay = 0.99      # the moving average decay factor for the target encoder, already set at what paper recommends
)

By default, this library will use the augmentations from the SimCLR paper (which is also used in the BYOL paper). However, if you would like to specify your own augmentation pipeline, you can simply pass in your own custom augmentation function with the augment_fn keyword.

augment_fn = nn.Sequential(
    kornia.augmentation.RandomHorizontalFlip()
)

learner = BYOL(
    resnet,
    image_size = 256,
    hidden_layer = -2,
    augment_fn = augment_fn
)

In the paper, they seem to assure that one of the augmentations have a higher gaussian blur probability than the other. You can also adjust this to your heart's delight.

augment_fn = nn.Sequential(
    kornia.augmentation.RandomHorizontalFlip()
)

augment_fn2 = nn.Sequential(
    kornia.augmentation.RandomHorizontalFlip(),
    kornia.filters.GaussianBlur2d((3, 3), (1.5, 1.5))
)

learner = BYOL(
    resnet,
    image_size = 256,
    hidden_layer = -2,
    augment_fn = augment_fn,
    augment_fn2 = augment_fn2,
)

To fetch the embeddings or the projections, you simply have to pass in a return_embeddings = True flag to the BYOL learner instance

import torch
from byol_pytorch import BYOL
from torchvision import models

resnet = models.resnet50(pretrained=True)

learner = BYOL(
    resnet,
    image_size = 256,
    hidden_layer = 'avgpool'
)

imgs = torch.randn(2, 3, 256, 256)
projection, embedding = learner(imgs, return_embedding = True)

Alternatives

If your downstream task involves segmentation, please look at the following repository, which extends BYOL to 'pixel'-level learning.

https://github.com/lucidrains/pixel-level-contrastive-learning

Citation

@misc{grill2020bootstrap,
    title = {Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning},
    author = {Jean-Bastien Grill and Florian Strub and Florent Altché and Corentin Tallec and Pierre H. Richemond and Elena Buchatskaya and Carl Doersch and Bernardo Avila Pires and Zhaohan Daniel Guo and Mohammad Gheshlaghi Azar and Bilal Piot and Koray Kavukcuoglu and Rémi Munos and Michal Valko},
    year = {2020},
    eprint = {2006.07733},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{chen2020exploring,
    title={Exploring Simple Siamese Representation Learning}, 
    author={Xinlei Chen and Kaiming He},
    year={2020},
    eprint={2011.10566},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Comments
  • Negative Loss, Transfer Learning/Fine-Tuning Question

    Negative Loss, Transfer Learning/Fine-Tuning Question

    Hi! Thanks for sharing this repo -- really clean and easy to use.

    When training using the PyTorch Lightning script from the repo, my loss is negative (and gets more negative over time) when training. Is this expected? Screenshot 2020-06-22 at 6 23 47 PM


    I'm curious to know if you've fine-tuned a pretrained model using this BYOL as the README example suggested. If yes, how were the results? Any intuition regarding how many epochs to fine-tune for?

    Thanks!

    opened by rsomani95 13
  • AssertionError: hidden layer never emitted an output with multi-gpu training

    AssertionError: hidden layer never emitted an output with multi-gpu training

    I tried your library with a WideResnet40-2 model and used layer_index=-2.

    The lightning example works fine for single-gpu but i got the error with multiple GPUs.

    opened by reactivetype 7
  • How to transfer the trained ckpt to pytorch.pth model?

    How to transfer the trained ckpt to pytorch.pth model?

    I use the example script to train a model, I got a ckpt file. but how could I extra the trained resnet50.pth instead of the whole SelfSupervisedLearner? Sorry I am new for pytorch lightning lib. What I want is the SelfSupervised resnet50.pth, because I want this to replace the original ImageNet-pretrained one. Thank you a lot.

    opened by knaffe 5
  • Training loss decreased and then increased

    Training loss decreased and then increased

    Hi, I used your example on my own data. The training loss decreased and then increased after 100 epochs, which is wired. Did you meet similar situations? Is it hard to train the model? the batchsize is 128/256 lr is 0.1/0.2 weight_decay is 1e-6

    opened by easonyang1996 4
  • Can't load ckpt

    Can't load ckpt

    I use byol-pytorch-master/examples/lightning/train.py to generate ckpt locally after training, but when I load ckpt, there will be the following errors. How should I load it? Thanks a lot! 截屏2020-11-18 上午12 51 48

    opened by AndrewTal 4
  • BYOL uses different augmentations for view1 and view2

    BYOL uses different augmentations for view1 and view2

    opened by OlivierDehaene 4
  • Transferring results on Cifar and other datasets

    Transferring results on Cifar and other datasets

    Thanks for your open sourcing!

    I notice that the BYOL has a large gap on the transferring downstream datasets: e.g., SimCLR reaches 71.6% on Cifar 100, while BYOL can reach to 78.4%.

    I understand that this might depends on the downstream training protocols. And could you provide us a sample code on that, especially for the LBFGS optimized logistic regressor?

    opened by jacobswan1 4
  • The saved network is same as the initial one?

    The saved network is same as the initial one?

    Firstly, thank you so much for this clean implementation!!

    The self-supervised training process looks good, but the saved (i.e. improved) model is exactly the same as the initial one on my side. Have you observed the same problem?

    The code I tested:

    import torch
    from net.byol import BYOL
    from torchvision import models
     
           
    resnet = models.resnet50(pretrained=True)
    param_1 = resnet.parameters()
    
    learner = BYOL(
        resnet,
        image_size = 256,
        hidden_layer = 'avgpool'
    )
    
    opt = torch.optim.Adam(learner.parameters(), lr=3e-4)
    
    def sample_unlabelled_images():
        return torch.randn(20, 3, 256, 256)
    
    for _ in range(2):
        images = sample_unlabelled_images()
        loss = learner(images)
        opt.zero_grad()
        loss.backward()
        opt.step()
        learner.update_moving_average() # update moving average of target encoder
    
    # save your improved network
    torch.save(resnet.state_dict(), './checkpoints/improved-net.pt')
    
    # restore the model      
    resnet2 = models.resnet50()
    resnet2.load_state_dict(torch.load('./checkpoints/improved-net.pt'))
    param_2 = resnet2.parameters()
    
    # test whether two models are the same 
    for p1, p2 in zip(param_1, param_2):
        if p1.data.ne(p2.data).sum() > 0:
            print('They are different.')
    print('They are same.')
    
    opened by KimMeen 3
  • the maximum batch size can only be set to 32

    the maximum batch size can only be set to 32

    When I run the code with a 2080ti GPU with 10G memory, the maximum batch size can only be set to 32. Is there any place in the code that takes up a lot of video memory?

    opened by cuixianheng 3
  • Pretrained network

    Pretrained network

    Hi, thanks for sharing the code and making it so easy to use. I see in the example you set resnet = models.resnet50(pretrained=True). Is this what is done in the paper? Shouldn't self-supervised-learned networks be trained from scratch?

    Thanks again, P.

    opened by pmorerio 3
  • Singleton Class Members

    Singleton Class Members

    Forgive me for my unfamiliarity with software design, but I'm wondering why it is necessary to write a singleton wrapper for projector and target_encoder. Is there any disadvantage of initializing them in __init__?

    opened by wentaoyuan 3
  • Increase EMA-parameter during training

    Increase EMA-parameter during training

    Hi, I noticed that the EMA-parameter (called beta in the code, τ in the paper) is not updated during training. In the paper they describe that they increase τ from the start value to 1 during training: "Specifically, we set τ = 1 − (1 − τbase) · (cos(πk/K) + 1)/2 with k the current training step and K the maximum number of training steps." This makes a huge difference to the validation loss at the end of the training.

    without_tau_update with_tau_update

    opened by Benjamin-Hansson 1
  • Why the loss is different from BYOL authors'

    Why the loss is different from BYOL authors'

    I found the loss is different from the loss said in BYOL paper which should be a L2 loss and I did't find explanation... The loss in this repo is a cosine loss, and I just want to know why. BTW, thanks for this great repo!

    opened by Jing-XING 2
  • How to cluster/predict images?

    How to cluster/predict images?

    Hi, I have trained using examples given with pytorch-lightning. I couldn't find code to do clustering of images after training. How can I find which image falls in which cluster? Is there any predictor API? I want to do something like this

    image

    opened by laxmimerit 1
  • BN layer weights and biases are not updated

    BN layer weights and biases are not updated

    Thanks for sharing this repo, great work!

    I trained BYOL on my data and noticed that the weights and biases for BN layers are not updated on the saved model. I used resnet18 without pretrained weights resnet = models.resnet50(pretrained=False). After training for multiple epochs, the saved model has bn1.weight all equal to 1.0 and bn1.bias all equal to 0.0 .

    Is this the expected behavior or am I missing something? Appreciate your response!

    opened by kregmi 1
  •  Warning: grad and param do not obey the gradient layout contract.

    Warning: grad and param do not obey the gradient layout contract.

    Has anybody gotten a similar warning when using it?

    Warning: grad and param do not obey the gradient layout contract. This is not an error, but may impair performance. grad.sizes() = [512, 256, 1, 1], strides() = [256, 1, 1, 1] param.sizes() = [512, 256, 1, 1], strides() = [256, 1, 256, 256] (function operator())

    opened by mohaEs 3
Releases(0.6.0)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023