This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Overview

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection

This is a PyTorch implementation of the LipForensics paper.

This is an Unofficially implemented codes with some Official code. I made this repo to use more conveniently.

If you want to see the Original code, You can cite this link

You should try the preprocessing, which steps are firstly getting landmarks and then cropping mouth.

Setup

Install packages

pip install -r requirements.txt

Note: we used Python version 3.8 to test this code.

Prepare data

  1. Follow the links below to download the datasets (you will be asked to fill out some forms before downloading):

  2. Extract the frames (e.g. using code in the FaceForensics++ repo.) The filenames of the frames should be as follows: 0000.png, 0001.png, ....

  3. Detect the faces and compute 68 face landmarks. For example, you can use RetinaFace and FAN for good results.

  4. Place face frames and corresponding landmarks into the appropriate directories:

    • For FaceForensics++, FaceShifter, and DeeperForensics, frames for a given video should be placed in data/datasets/Forensics/{dataset_name}/{compression}/images/{video}, where dataset_name is RealFF (real frames from FF++), Deepfakes, FaceSwap, Face2Face, NeuralTextures, FaceShifter, or DeeperForensics. dataset_name is c0, c23, or c40, corresponding to no compression, low compression, and high compression, respectively. video is the video name and should be numbered as follows: 000, 001, .... For example, the frame 0102 of real video 067 at c23 compression is found in data/datasets/Forensics/RealFF/c23/images/067/0102.png
    • For CelebDF-v2, frames for a given video should be placed in data/datasets/CelebDF/{dataset_name}/images/{video} where dataset_name is RealCelebDF, which should include all real videos from the test set, or FakeCelebDF, which should include all fake videos from the test set.
    • For DFDC, frames for a given video should be placed in data/datasets/DFDC/images (both real and fake). The video names from the test set we used in our experiments are given in data/datasets/DFDC/dfdc_all_vids.txt.

    The corresponding computed landmarks for each frame should be placed in .npy format in the directories defined by replacing images with landmarks above (e.g. for video "000", the .npy files for each frame should be placed in data/datasets/Forensics/RealFF/c23/landmarks/000).

  5. To crop the mouth region from each frame for all datasets, run

    python preprocessing/crop_mouths.py --dataset all

    This will write the mouth images into the corresponding cropped_mouths directory.

Evaluate

  • Cross-dataset generalisation (Table 2 in paper):
    1. Download the pretrained model and place into models/weights. This model has been trained on FaceForensics++ (Deepfakes, FaceSwap, Face2Face, and NeuralTextures) and is the one used to get the LipForensics video-level AUC results in Table 2 of the paper, reproduced below:

      CelebDF-v2 DFDC FaceShifter DeeperForensics
      82.4% 73.5% 97.1% 97.6%
    2. To evaluate on e.g. FaceShifter, run

      python evaluate.py --dataset FaceShifter --weights_forgery ./models/weights/lipforensics_ff.pth

Citation

If you find this repo useful for your research, please consider citing the following:

@inproceedings{haliassos2021lips,
  title={Lips Don't Lie: A Generalisable and Robust Approach To Face Forgery Detection},
  author={Haliassos, Alexandros and Vougioukas, Konstantinos and Petridis, Stavros and Pantic, Maja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5039--5049},
  year={2021}
}
Owner
Minha Kim
@DASH-Lab on Sungkyunkwan University in Korea
Minha Kim
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022