GPU-Accelerated Deep Learning Library in Python

Related tags

Deep Learninghebel
Overview

Hebel

GPU-Accelerated Deep Learning Library in Python

Hebel is a library for deep learning with neural networks in Python using GPU acceleration with CUDA through PyCUDA. It implements the most important types of neural network models and offers a variety of different activation functions and training methods such as momentum, Nesterov momentum, dropout, and early stopping.

I no longer actively develop Hebel. If you are looking for a deep learning framework in Python, I now recommend Chainer.

Models

Right now, Hebel implements feed-forward neural networks for classification and regression on one or multiple tasks. Other models such as Autoencoder, Convolutional neural nets, and Restricted Boltzman machines are planned for the future.

Hebel implements dropout as well as L1 and L2 weight decay for regularization.

Optimization

Hebel implements stochastic gradient descent (SGD) with regular and Nesterov momentum.

Compatibility

Currently, Hebel will run on Linux and Windows, and probably Mac OS X (not tested).

Dependencies

  • PyCUDA
  • numpy
  • PyYAML
  • skdata (only for MNIST example)

Installation

Hebel is on PyPi, so you can install it with

pip install hebel

Getting started

Study the yaml configuration files in examples/ and run

python train_model.py examples/mnist_neural_net_shallow.yml

The script will create a directory in examples/mnist where the models and logs are saved.

Read the Getting started guide at hebel.readthedocs.org/en/latest/getting_started.html for more information.

Documentation

hebel.readthedocs.org

Contact

Maintained by Hannes Bretschneider ([email protected]). If your are using Hebel, please let me know whether you find it useful and file a Github issue if you find any bugs or have feature requests.

Citing

http://dx.doi.org/10.5281/zenodo.10050

If you make use of Hebel in your research, please cite it. The BibTeX reference is

@article{Bretschneider:10050,
  author        = "Hannes Bretschneider",
  title         = "{Hebel - GPU-Accelerated Deep Learning Library in Python}",
  month         = "May",
  year          = "2014",
  doi           = "10.5281/zenodo.10050",
  url           = "https://zenodo.org/record/10050",
}

What's with the name?

Hebel is the German word for lever, one of the oldest tools that humans use. As Archimedes said it: "Give me a lever long enough and a fulcrum on which to place it, and I shall move the world."

Comments
  • Contributing PyCUDA routines

    Contributing PyCUDA routines

    Heya

    I stumbled across this project looking for some PyCUDA routines that operate on matrices per-row or per-column. It seems you have a bunch of handy routines for this, which is awesome, e.g. row-wise maximum, add_vec_to_mat etc.

    Would you be willing to contribute them back to PyCUDA? a lot of these routines seem like they'd definitely be useful more widely. And perhaps offering the contribution might give the PyCUDA guys some inspiration or a kick in the arse to create a more general partial reductions API (like numpy's axis=0 arguments) and broadcasting behaviour for element-wise operations on GPUArrays? (I would attempt this myself but my CUDA-fu is weak)

    Just a thought anyway. I would suggest it to them myself but the licencing is different (GPL vs MIT)

    Cheers!

    opened by mjwillson 6
  • [WIP][HEP3] Implement convolution for DNA sequence

    [WIP][HEP3] Implement convolution for DNA sequence

    I am merging my code for training conv-nets from DNA sequence into Hebel. This should be done by the end of January 2015. Please follow this issue if you are interested in using Hebel for learning from DNA sequence or would like to test it.

    Hebel Enhancement Proposal 
    opened by hannes-brt 3
  • Compiling issues with MacOSX

    Compiling issues with MacOSX

    I am trying to compile in Mac OSX yosemite and it seems hebel is not running. i installed PyCUDA and other libraries needed but stuck at this error.

    $ python hebel_test.py Traceback (most recent call last): File "hebel_test.py", line 18, in hebel.init(0) File "/Users/prabhubalakrishnan/Desktop/hebel/hebel/init.py", line 131, in init from pycuda import gpuarray, driver, curandom File "/Library/Python/2.7/site-packages/pycuda-2014.1-py2.7-macosx-10.10-intel.egg/pycuda/gpuarray.py", line 3, in import pycuda.elementwise as elementwise File "/Library/Python/2.7/site-packages/pycuda-2014.1-py2.7-macosx-10.10-intel.egg/pycuda/elementwise.py", line 34, in from pytools import memoize_method File "/Library/Python/2.7/site-packages/pytools-2014.3.5-py2.7.egg/pytools/init.py", line 5, in from six.moves import range, zip, intern, input ImportError: cannot import name intern

    How to fix?

    opened by olddocks 3
  • Global name 'hidden_inputs' is not defined

    Global name 'hidden_inputs' is not defined

    When running optimizer.run(100), an error occurred: global name 'hidden_inputs' is not defined in line 323 of ./hebel/hebel/models/neurals_net.py

    Where to define the global variable 'hidden_inputs'? Thanks!

    opened by Robert0812 3
  • AttributeError: python: undefined symbol: cuPointerGetAttribute

    AttributeError: python: undefined symbol: cuPointerGetAttribute

    [email protected]:~/github/hebel$ echo $LD_LIBRARY_PATH /usr/local/cuda:/usr/local/cuda/bin:/usr/local/cuda/lib64:/home/ubgpu/torch/install/lib:/home/ubgpu/torch/install/lib [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ python train_model.py examples/mnist_neural_net_shallow.yml Traceback (most recent call last): File "train_model.py", line 39, in run_from_config(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 41, in run_from_config config = load(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 92, in load proxy_graph = yaml.load(string, **kwargs) File "/usr/local/lib/python2.7/dist-packages/yaml/init.py", line 71, in load return loader.get_single_data() File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 39, in get_single_data return self.construct_document(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 48, in construct_document for dummy in generator: File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 398, in construct_yaml_map value = self.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 323, in multi_constructor classname = try_to_import(tag_suffix) File "/home/ubgpu/github/hebel/hebel/config.py", line 251, in try_to_import exec('import %s' % modulename) File "", line 1, in File "/home/ubgpu/github/hebel/hebel/layers/init.py", line 17, in from .dummy_layer import DummyLayer File "/home/ubgpu/github/hebel/hebel/layers/dummy_layer.py", line 17, in from .hidden_layer import HiddenLayer File "/home/ubgpu/github/hebel/hebel/layers/hidden_layer.py", line 25, in from ..pycuda_ops import linalg File "/home/ubgpu/github/hebel/hebel/pycuda_ops/linalg.py", line 32, in from . import cublas File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cublas.py", line 47, in import cuda File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cuda.py", line 36, in from cudadrv import * File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cudadrv.py", line 233, in _libcuda.cuPointerGetAttribute.restype = int File "/usr/lib/python2.7/ctypes/init.py", line 378, in getattr func = self.getitem(name) File "/usr/lib/python2.7/ctypes/init.py", line 383, in getitem func = self._FuncPtr((name_or_ordinal, self)) AttributeError: python: undefined symbol: cuPointerGetAttribute [email protected]:~/github/hebel$

    opened by andyyuan78 2
  • OSError: CUDA runtime library not found

    OSError: CUDA runtime library not found

    [email protected]:~/github/hebel$ sudo pip install pyCUDA Requirement already satisfied (use --upgrade to upgrade): pyCUDA in /usr/local/lib/python2.7/dist-packages Requirement already satisfied (use --upgrade to upgrade): decorator>=3.2.0 in /usr/local/lib/python2.7/dist-packages (from pyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytools>=2011.2 in /usr/local/lib/python2.7/dist-packages (from pyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytest>=2 in /usr/local/lib/python2.7/dist-packages (from pyCUDA) Requirement already satisfied (use --upgrade to upgrade): appdirs>=1.4.0 in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->pyCUDA) Requirement already satisfied (use --upgrade to upgrade): six in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->pyCUDA) Requirement already satisfied (use --upgrade to upgrade): py>=1.4.25 in /usr/local/lib/python2.7/dist-packages (from pytest>=2->pyCUDA) [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ python Python 2.7.6 (default, Mar 22 2014, 22:59:56) [GCC 4.8.2] on linux2 Type "help", "copyright", "credits" or "license" for more information.

    quit() [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ sudo pip install PyCUDA Requirement already satisfied (use --upgrade to upgrade): PyCUDA in /usr/local/lib/python2.7/dist-packages Requirement already satisfied (use --upgrade to upgrade): decorator>=3.2.0 in /usr/local/lib/python2.7/dist-packages (from PyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytools>=2011.2 in /usr/local/lib/python2.7/dist-packages (from PyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytest>=2 in /usr/local/lib/python2.7/dist-packages (from PyCUDA) Requirement already satisfied (use --upgrade to upgrade): appdirs>=1.4.0 in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->PyCUDA) Requirement already satisfied (use --upgrade to upgrade): six in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->PyCUDA) Requirement already satisfied (use --upgrade to upgrade): py>=1.4.25 in /usr/local/lib/python2.7/dist-packages (from pytest>=2->PyCUDA) [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ echo $PYTHONPATH /usr/local/lib/python2.7/dist-packages [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ python train_model.py examples/mnist_neural_net_shallow.yml Traceback (most recent call last): File "train_model.py", line 39, in run_from_config(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 41, in run_from_config config = load(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 92, in load proxy_graph = yaml.load(string, **kwargs) File "/usr/local/lib/python2.7/dist-packages/yaml/init.py", line 71, in load return loader.get_single_data() File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 39, in get_single_data return self.construct_document(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 48, in construct_document for dummy in generator: File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 398, in construct_yaml_map value = self.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 323, in multi_constructor classname = try_to_import(tag_suffix) File "/home/ubgpu/github/hebel/hebel/config.py", line 251, in try_to_import exec('import %s' % modulename) File "", line 1, in File "/home/ubgpu/github/hebel/hebel/layers/init.py", line 17, in from .dummy_layer import DummyLayer File "/home/ubgpu/github/hebel/hebel/layers/dummy_layer.py", line 17, in from .hidden_layer import HiddenLayer File "/home/ubgpu/github/hebel/hebel/layers/hidden_layer.py", line 25, in from ..pycuda_ops import linalg File "/home/ubgpu/github/hebel/hebel/pycuda_ops/linalg.py", line 32, in from . import cublas File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cublas.py", line 47, in import cuda File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cuda.py", line 35, in from cudart import * File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cudart.py", line 60, in raise OSError('CUDA runtime library not found') OSError: CUDA runtime library not found

    opened by andyyuan78 1
  • AttributeError: 'NoneType' object has no attribute 'cudaGetErrorString'

    AttributeError: 'NoneType' object has no attribute 'cudaGetErrorString'

    at commit a7f4cbb91c029c344921db76850bf9dc8eb47af4 with python 2.7.6 I try: 'python train_model.py examples/mnist_neural_net_shallow.yml' And i get the following

    Traceback (most recent call last):
      File "train_model.py", line 39, in <module>
        run_from_config(yaml_src)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 41, in run_from_config
        config = load(yaml_src)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 92, in load
        proxy_graph = yaml.load(string, **kwargs)
      File "/usr/local/lib/python2.7/site-packages/yaml/__init__.py", line 71, in load
        return loader.get_single_data()
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 39, in get_single_data
        return self.construct_document(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 48, in construct_document
        for dummy in generator:
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 398, in construct_yaml_map
        value = self.construct_mapping(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 208, in construct_mapping
        return BaseConstructor.construct_mapping(self, node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 133, in construct_mapping
        value = self.construct_object(value_node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 90, in construct_object
        data = constructor(self, tag_suffix, node)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 318, in multi_constructor
        mapping = loader.construct_mapping(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 208, in construct_mapping
        return BaseConstructor.construct_mapping(self, node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 133, in construct_mapping
        value = self.construct_object(value_node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 90, in construct_object
        data = constructor(self, tag_suffix, node)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 318, in multi_constructor
        mapping = loader.construct_mapping(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 208, in construct_mapping
        return BaseConstructor.construct_mapping(self, node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 133, in construct_mapping
        value = self.construct_object(value_node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 90, in construct_object
        data = constructor(self, tag_suffix, node)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 323, in multi_constructor
        classname = try_to_import(tag_suffix)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 251, in try_to_import
        exec('import %s' % modulename)
      File "<string>", line 1, in <module>
      File "/Users/epic/Documents/git/hebel/hebel/layers/__init__.py", line 17, in <module>
        from .dummy_layer import DummyLayer
      File "/Users/epic/Documents/git/hebel/hebel/layers/dummy_layer.py", line 17, in <module>
        from .hidden_layer import HiddenLayer
      File "/Users/epic/Documents/git/hebel/hebel/layers/hidden_layer.py", line 25, in <module>
        from ..pycuda_ops import linalg
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/linalg.py", line 32, in <module>
        from . import cublas
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/cublas.py", line 47, in <module>
        import cuda
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/cuda.py", line 35, in <module>
        from cudart import *
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/cudart.py", line 142, in <module>
        _libcudart.cudaGetErrorString.restype = ctypes.c_char_p
    AttributeError: 'NoneType' object has no attribute 'cudaGetErrorString'
    
    opened by epichub 1
  • Report a tiny bug in running example script

    Report a tiny bug in running example script

    Example script data_providers.py imports skdata by
    from skdata.mnist.view import OfficialVectorClassification

    It should be skdata.mnist.views, otherwise errors occur.

    opened by Robert0812 1
  • Missing packages added.

    Missing packages added.

    It's not enough to specify root package (i.e. hebel) in packages argument of setup.py. In order to successfully install hebel, subpackages must be listed as well.

    opened by mnowotka 0
  • docs: fix simple typo, initalized -> initialized

    docs: fix simple typo, initalized -> initialized

    There is a small typo in hebel/layers/hidden_layer.py, hebel/layers/linear_regression_layer.py, hebel/layers/logistic_layer.py, hebel/layers/softmax_layer.py.

    Should read initialized rather than initalized.

    Semi-automated pull request generated by https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md

    opened by timgates42 0
  • Small documentation enhancement request

    Small documentation enhancement request

    Hi there, I really appreciate Hebel. It was a good first step for me to "take the plunge" into using GPU.

    I struggled a bit after going through the example (MNIST) script. In particular, it wasn't clear how to have the model predict new data (i.e., data you don't have targets for).

    The first (small) stumble was what to with the DataProvider. I just put in dummy zero targets. Perhaps targets could be an optional field somehow?

    A more thorny issue was how to actually do the predictions. I couldn't for the life of me figure out how to feed the DataProvider data into the feed_forward without getting the error:

      File "/usr/local/lib/python2.7/dist-packages/hebel/models/neural_net.py", line 422, in feed_forward
        prediction=prediction))
      File "/usr/local/lib/python2.7/dist-packages/hebel/layers/input_dropout.py", line 96, in feed_forward
        return (input_data * (1 - self.dropout_probability),)
    TypeError: unsupported operand type(s) for *: 'MiniBatchDataProvider' and 'float'
    

    This was my original attempt:

    # After loading in the data . . .
    Xv = Xv.astype(np.float32)
    yv = pd.get_dummies(yv).values.astype(np.float32)
    valid_data = MiniBatchDataProvider(Xv, yv, batch_size=5000)
    

    I finally resorted to useing a gpu array which worked:

    from pycuda import gpuarray
    valid_data = gpuarray.to_gpu(Xt)
    y_pred = model.feed_forward(valid_data, return_cache=False, prediction=True).get()
    

    The .get() at the end of the last statement was also something I had to figure out going through code.

    Having an example in the documentation would be helpful.

    opened by walterreade 1
Releases(v0.02.1)
Owner
Hannes Bretschneider
Postdoctoral Fellow in the Blencowe Lab at University of Toronto
Hannes Bretschneider
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022