A Python framework for conversational search

Overview

Chatty Goose

Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting


PyPI LICENSE

Installation

  1. Make sure Java 11+ and Python 3.7+ are installed

  2. Install the chatty-goose PyPI module

pip install chatty-goose
  1. If you are using T5 or BERT, make sure to install PyTorch 1.4.0 - 1.7.1 using your specific platform instructions. Note that PyTorch 1.8 is currently incompatible due to the transformers version we currently use. Also make sure to install the corresponding torchtext version.

  2. Download the English model for spaCy

python -m spacy download en_core_web_sm

Quickstart Guide

The following example shows how to initialize a searcher and build a ConversationalQueryRewriter agent from scratch using HQE and T5 as first-stage retrievers, and a BERT reranker. To see a working example agent, see chatty_goose/agents/chat.py.

First, load a searcher

from pyserini.search import SimpleSearcher

# Option 1: load a prebuilt index
searcher = SimpleSearcher.from_prebuilt_index("INDEX_NAME_HERE")
# Option 2: load a local Lucene index
searcher = SimpleSearcher("PATH_TO_INDEX")

searcher.set_bm25(0.82, 0.68)

Next, initialize one or more first-stage CQR retrievers

from chatty_goose.cqr import Hqe, Ntr
from chatty_goose.settings import HqeSettings, NtrSettings

hqe = Hqe(searcher, HqeSettings())
ntr = Ntr(NtrSettings())

Load a reranker

from chatty_goose.util import build_bert_reranker

reranker = build_bert_reranker()

Create a new RetrievalPipeline

from chatty_goose.pipeline import RetrievalPipeline

rp = RetrievalPipeline(searcher, [hqe, ntr], searcher_num_hits=50, reranker=reranker)

And we're done! Simply call rp.retrieve(query) to retrieve passages, or call rp.reset_history() to reset the conversational history of the retrievers.

Running Experiments

  1. Clone the repo and all submodules (git submodule update --init --recursive)

  2. Clone and build Anserini for evaluation tools

  3. Install dependencies

pip install -r requirements.txt
  1. Follow the instructions under docs/cqr_experiments.md to run experiments using HQE, T5, or fusion.

Example Agent

To run an interactive conversational search agent with ParlAI, simply run chat.py. By default, we use the CAsT 2019 pre-built Pyserini index, but it is possible to specify other indexes using the --from_prebuilt flag. See the file for other possible arguments:

python -m chatty_goose.agents.chat

Alternatively, run the agent using ParlAI's command line interface:

python -m parlai interactive --model chatty_goose.agents.chat:ChattyGooseAgent

We also provide instructions to deploy the agent to Facebook Messenger using ParlAI under examples/messenger.

Comments
  • Add baselines for CAsT 2020

    Add baselines for CAsT 2020

    Need someone help to add CAsT 2020 baseline results:

    • [ ] Naive: CQR without canonical responses
    • [ ] Canonical: CQR with canonical (manual) response

    CQR methods: HQE /Ntr (T5)

    enhancement help wanted 
    opened by justram 2
  • Running HQE and getting the reformulated queries

    Running HQE and getting the reformulated queries

    Dear authors,

    I am trying to use your method in some of my work. For that, I need to get the reformulated queries (instead of only the generated ranked hits).

    I am trying to run the HQE experiment as indicated using:

    python -m experiments.run_retrieval \
          --experiment hqe \
          --hits 1000 \
          --sparse_index cast2019 \
          --qid_queries $input_query_json \
          --output ./output/hqe_bm25 
    

    However, when I print the arguments passed inside the retrieval pipeline (L101 of retrieval_pipeline.py) I get as query the raw/original/last-turn query string, and as manual_context_buffer[turn_id] simply None. If I'm not mistaken, that means that running the specific experiment equals to no reformulation being done at all. Can you check/confirm this?

    Digging more into the code, it seems to me that the queries I'd like to access are inside cqr_queries, but still, it seems to me that context should be empty/None in that case - probably resulting to no reformulation done at all.

    opened by littlewine 1
  • Query rewriting fix

    Query rewriting fix

    Thank you with the project.

    The fix to below will be hits = rp.retrieve(query, manual_context_buffer[turn_id-1] if turn_id!=0 else None), to pass the last previous canonical response.

    https://github.com/castorini/chatty-goose/blob/f9c21c8b7b6194d11d7aec5b4e218174cde98418/experiments/run_retrieval.py#L100

    opened by xeniaqian94 1
  • Update based on Pyserini==0.14.0 and fix canonical response bug

    Update based on Pyserini==0.14.0 and fix canonical response bug

    Main change:

    1. change --dense_index from temporary one to pyserini prebuilt index name
    2. fix canonical response bug, which previously add current response to context
    3. since now we have --dense_index, change option name --index to --sparse_index
    opened by jacklin64 0
  • Add chatty goose support for dense retrieval and hybrid search for T5 and CQE

    Add chatty goose support for dense retrieval and hybrid search for T5 and CQE

    New features added: (only for T5 and CQE, may consider HQE in the future) (1) Dense retrieval (2) Dense-sparse hybrid retrieval

    Some arg might be confused and may be changed in the future: (1) --index, --dense_index: may change to --sparse_index and --dense_index (2) --experiment now has options (hqe,cqe,t5,fusion,cqe_t5_fusion) may change to (hqe,cqe,t5,hqe_t5fusion,cqe_t5_fusion)

    opened by jacklin64 0
  • Add cast2020 baseline

    Add cast2020 baseline

    This PR adds both naive and canonical baselines for CAsT2020 topics. The results are overall lower as compared to CAst2019 and the results from the canonical run are only slightly better for some metrics as compared to results from the naive run.

    Resolves #23

    opened by saileshnankani 0
  • Add support for canonical response

    Add support for canonical response

    This PR adds support for using manual_canonical_result_id in the CAsT2020 data for both ntr and hqe (for #23).

    For ntr, rewrite uses the passage corresponding to the canonical document in the history. We only use 1 passage in the historical context as otherwise, it exceed 512 tokens limit. For e.g., it uses q1/P1/q2 and then q1/q2/P2/q3 and so on.

    enhancement 
    opened by saileshnankani 0
  • CQR Replication

    CQR Replication

    Add CQR replication for Fusion BM25

    Library versions used: torch==1.7.0 torchvision==0.8.1 torchtext==0.8


    Results:

    map                   	all	0.2584
    recall_1000           	all	0.8028
    ndcg_cut_1            	all	0.3353
    ndcg_cut_3            	all	0.3247
    

    Details and reproduction results can be found in the notebook

    opened by saileshnankani 0
  • Rename classes and update messenger bot

    Rename classes and update messenger bot

    Breaking changes:

    Renamed several classes to follow Python conventions / be more consistent

    • chatty_goose.agents.cqragent -> chatty_goose.agents.chat
    • HQE -> Hqe
    • T5_NTR -> Ntr
    • HQESettings -> HqeSettings
    • T5Settings -> NtrSettings
    • CQRType -> CqrType
    • CQRSettings -> CqrSettings
    • CQR -> ConversationalQueryRewriter
    opened by edwinzhng 0
  • document spaCy model dependency

    document spaCy model dependency

    With a fresh install, we get the following error if we try to run anything:

    OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory.
    

    Solution is:

    $ python -m spacy download en_core_web_sm
    

    We should document this.

    opened by lintool 0
  • PyTorch version: needs Torch 1.7 (won't work with 1.8)

    PyTorch version: needs Torch 1.7 (won't work with 1.8)

    With a from-scratch installation, the module pulls in Torch 1.8, which causes this error:

    ImportError: cannot import name 'SAVE_STATE_WARNING' from 'torch.optim.lr_scheduler' (/anaconda3/envs/chatty-goose-test/lib/python3.7/site-packages/torch/optim/lr_scheduler.py)
    

    Downgrading fixes the issue:

    $ pip install torch==1.7.1 torchtext==0.8.1
    

    Should we pin the version in our module dependencies? Or at the very least this needs to be documented.=

    opened by lintool 0
  • dependency conflict

    dependency conflict

    Hi,

    When I install chatty-goose from github using:

    python -m pip install git+https://github.com/castorini/chatty-goose.git
    
    

    I met this issue:

    ERROR: Cannot install chatty-goose and chatty-goose==0.2.0 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        chatty-goose 0.2.0 depends on pyserini==0.14.0
        pygaggle 0.0.3.1 depends on pyserini==0.10.1.0
    

    It seems that chatty-goose requires pyserini==0.14.0 as well as pygaggle 0.0.3.1. However, pygaggle 0.0.3.1 and pyserini==0.14.0 do not play nice with each other

    Could someone provide some help?

    Thanks!

    opened by dayuyang1999 1
  • Expansion to new datasets

    Expansion to new datasets

    Does it make sense to expand Chatty Goose to new datasets? For example:

    • MANtIS - a multi-domain information seeking dialogues dataset: https://guzpenha.github.io/MANtIS/
    • ClariQ - Search-oriented Conversational AI (SCAI) EMNLP https://github.com/aliannejadi/ClariQ
    enhancement 
    opened by lintool 1
  • Checkpoint transformation

    Checkpoint transformation

    According to @edwinzhng's replication log, we have a reranker checkpoint mismatch issue. Currently, we have diffs in our reranking model and the pygaggle's default model.

    Related to this issue: I think we need a folder to put/track our tf2torch ckpt transformation/sanity check scripts?

    opened by justram 0
Releases(0.2.0)
  • 0.2.0(May 7, 2021)

    Breaking changes

    Renamed several classes to follow Python conventions / be more consistent

    chatty_goose.agents.cqragent -> chatty_goose.agents.chat HQE -> Hqe T5_NTR -> Ntr HQESettings -> HqeSettings T5Settings -> NtrSettings CQRType -> CqrType CQRSettings -> CqrSettings CQR -> ConversationalQueryRewriter

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Mar 8, 2021)

    BREAKING CHANGES

    • Integrate ParlAI Facebook Messenger example for a demo by @edwinzhng
    • Integrate Pyserini/Pygaggle for a reference implementation of multi-stage passage retrieval by @edwinzhng
    • Add replication log for TREC CAsT 2019 conversational passage retrieval task by @edwinzhng
    Source code(tar.gz)
    Source code(zip)
Owner
Castorini
Deep learning for natural language processing and information retrieval at the University of Waterloo
Castorini
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022