DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

Related tags

Deep LearningDropNAS
Overview

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS, a grouped operation dropout method for one-level DARTS, with better and more stable performance.

Requirements

  • python-3.5.2
  • pytorch-1.0.0
  • torchvision-0.2.0
  • tensorboardX-2.0
  • graphviz-0.14

How to use the code

  • Search
# with the default setting presented in paper, but you may need to adjust the batch size to prevent OOM 
python3 search.py --name cifar10_example --dataset CIFAR10 --gpus 0
  • Augment
# use the genotype we found on CIFAR10

python3 augment.py --name cifar10_example --dataset CIFAR10 --gpus 0 --genotype "Genotype(
    normal=[[('sep_conv_3x3', 1), ('skip_connect', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('dil_conv_5x5', 4), ('dil_conv_3x3', 1)]],
    normal_concat=range(2, 6),
    reduce=[[('max_pool_3x3', 0), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 2), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 2)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 4)]],
    reduce_concat=range(2, 6)
)"

Results

The following results in CIFAR-10/100 are obtained with the default setting. More results with different arguements and other dataset like ImageNet can be found in the paper.

Dataset Avg Acc (%) Best Acc (%)
CIFAR-10 97.42±0.14 97.74
CIFAR-100 83.05±0.41 83.61

The performance of DropNAS and one-level DARTS across different search spaces on CIFAR-10/100.

Dataset Search Space DropNAS Acc (%) one-level DARTS Acc (%)
CIFAR-10 3-skip 97.32±0.10 96.81±0.18
1-skip 97.33±0.11 97.15±0.12
original 97.42±0.14 97.10±0.16
CIFAR-100 3-skip 83.03±0.35 82.00±0.34
1-skip 83.53±0.19 82.27±0.25
original 83.05±0.41 82.73±0.36

The test error of DropNAS on CIFAR-10 when different operation groups are applied with different drop path rates.

r_p=1e-5 r_p=3e-5 r_p=1e-4
r_np=1e-5 97.40±0.16 97.28±0.04 97.36±0.12
r_np=3e-5 97.36±0.11 97.42±0.14 97.31±0.05
r_np=1e-4 97.35±0.07 97.31±0.10 97.37±0.16

Found Architectures

cifar10-normal cifar10-reduce
CIFAR-10

cifar100-normal cifar100-reduce
CIFAR100

Reference

[1] https://github.com/quark0/darts (official implementation of DARTS)

[2] https://github.com/khanrc/pt.darts

[3] https://github.com/susan0199/StacNAS (feature map code used in our paper)

Owner
weijunhong
weijunhong
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022