DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

Related tags

Deep LearningDropNAS
Overview

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS, a grouped operation dropout method for one-level DARTS, with better and more stable performance.

Requirements

  • python-3.5.2
  • pytorch-1.0.0
  • torchvision-0.2.0
  • tensorboardX-2.0
  • graphviz-0.14

How to use the code

  • Search
# with the default setting presented in paper, but you may need to adjust the batch size to prevent OOM 
python3 search.py --name cifar10_example --dataset CIFAR10 --gpus 0
  • Augment
# use the genotype we found on CIFAR10

python3 augment.py --name cifar10_example --dataset CIFAR10 --gpus 0 --genotype "Genotype(
    normal=[[('sep_conv_3x3', 1), ('skip_connect', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('dil_conv_5x5', 4), ('dil_conv_3x3', 1)]],
    normal_concat=range(2, 6),
    reduce=[[('max_pool_3x3', 0), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 2), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 2)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 4)]],
    reduce_concat=range(2, 6)
)"

Results

The following results in CIFAR-10/100 are obtained with the default setting. More results with different arguements and other dataset like ImageNet can be found in the paper.

Dataset Avg Acc (%) Best Acc (%)
CIFAR-10 97.42±0.14 97.74
CIFAR-100 83.05±0.41 83.61

The performance of DropNAS and one-level DARTS across different search spaces on CIFAR-10/100.

Dataset Search Space DropNAS Acc (%) one-level DARTS Acc (%)
CIFAR-10 3-skip 97.32±0.10 96.81±0.18
1-skip 97.33±0.11 97.15±0.12
original 97.42±0.14 97.10±0.16
CIFAR-100 3-skip 83.03±0.35 82.00±0.34
1-skip 83.53±0.19 82.27±0.25
original 83.05±0.41 82.73±0.36

The test error of DropNAS on CIFAR-10 when different operation groups are applied with different drop path rates.

r_p=1e-5 r_p=3e-5 r_p=1e-4
r_np=1e-5 97.40±0.16 97.28±0.04 97.36±0.12
r_np=3e-5 97.36±0.11 97.42±0.14 97.31±0.05
r_np=1e-4 97.35±0.07 97.31±0.10 97.37±0.16

Found Architectures

cifar10-normal cifar10-reduce
CIFAR-10

cifar100-normal cifar100-reduce
CIFAR100

Reference

[1] https://github.com/quark0/darts (official implementation of DARTS)

[2] https://github.com/khanrc/pt.darts

[3] https://github.com/susan0199/StacNAS (feature map code used in our paper)

Owner
weijunhong
weijunhong
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
MohammadReza Sharifi 27 Dec 13, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022