Deep Image Matting implementation in PyTorch

Overview

Deep Image Matting

Deep Image Matting paper implementation in PyTorch.

Differences

  1. "fc6" is dropped.
  2. Indices pooling.

"fc6" is clumpy, over 100 millions parameters, makes the model hard to converge. I guess it is the reason why the model (paper) has to be trained stagewisely.

Performance

  • The Composition-1k testing dataset.
  • Evaluate with whole image.
  • SAD normalized by 1000.
  • Input image is normalized with mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225].
  • Both erode and dialte to generate trimap.
Models SAD MSE Download
paper-stage0 59.6 0.019
paper-stage1 54.6 0.017
paper-stage3 50.4 0.014
my-stage0 66.8 0.024 Link

Dependencies

  • Python 3.5.2
  • PyTorch 1.1.0

Dataset

Adobe Deep Image Matting Dataset

Follow the instruction to contact author for the dataset.

MSCOCO

Go to MSCOCO to download:

PASCAL VOC

Go to PASCAL VOC to download:

Usage

Data Pre-processing

Extract training images:

$ python pre_process.py

Train

$ python train.py

If you want to visualize during training, run in your terminal:

$ tensorboard --logdir runs

Experimental results

The Composition-1k testing dataset

  1. Test:
$ python test.py

It prints out average SAD and MSE errors when finished.

The alphamatting.com dataset

  1. Download the evaluation datasets: Go to the Datasets page and download the evaluation datasets. Make sure you pick the low-resolution dataset.

  2. Extract evaluation images:

$ python extract.py
  1. Evaluate:
$ python eval.py

Click to view whole images:

Image Trimap1 Trimap2 Trimap3
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image
image image image image

Demo

Download pre-trained Deep Image Matting Link then run:

$ python demo.py
Image/Trimap Output/GT New BG/Compose
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image
image image image

小小的赞助~

Sample

若对您有帮助可给予小小的赞助~




Comments
  • the frozen model named BEST_checkpoint.tar cannot be uncompressed

    the frozen model named BEST_checkpoint.tar cannot be uncompressed

    when I try to uncompress the frozen model it shows

    tar: This does not look like a tar archive tar: Skipping to next header tar: Exiting with failure status due to previous errors

    this means the .tar file is not complete

    opened by banrenmasanxing 6
  • my own datasets are all full human body images

    my own datasets are all full human body images

    Hi,thanks for your excellent work.Now i prepare my own datasets.This datasets are consists of thounds of high resolution image(average 4000*4000).They are all full human body images.When i process these images,i meet a questions: When i crop the trimap(generated from alpha),often crop some places which are not include hair.Such as foot,leg.Is it ok to input these images into [email protected]

    opened by lfxx 5
  • run demo.py question!

    run demo.py question!

    File "demo.py", line 84, in new_bgs = random.sample(new_bgs, 10) File "C:\Users\15432\AppData\Local\conda\conda\envs\python34\lib\random.py", line 324, in sample raise ValueError("Sample larger than population") ValueError: Sample larger than population

    opened by kxcg99 5
  • Invalid BEST_checkpoint.tar ?

    Invalid BEST_checkpoint.tar ?

    Hi, thank you for the code. I tried to download the pretrained model and extract it but it dosnt work.

    tar xvf BEST_checkpoint.tar BEST_checkpoint
    

    results in

    tar: Ceci ne ressemble pas à une archive de type « tar »
    tar: On saute à l'en-tête suivant
    tar: BEST_checkpoint : non trouvé dans l'archive
    tar: Arrêt avec code d'échec à cause des erreurs précédentes
    

    anything i'm doing the wrong way ? or the provided tar is not valid ? kind reards

    opened by flocreate 4
  • How can i get the Trimaps of my pictures?

    How can i get the Trimaps of my pictures?

    Now, I got a model, I want to use it but I can't, because I have not the Trimaps of my pictures. Are there the script of code to build the Trimaps? How can i get the Trimaps of my pictures?

    opened by huangjunxiong11 3
  • can not unpack the 'BEST_checkpoint.tar'

    can not unpack the 'BEST_checkpoint.tar'

    When i download the file "BEST_checkpoint.tar" successfully, i can't unpack it. Actually, when i try to unpack 'BEST_checkpoint.tar', it make an error. Is it my fault , or, Is the file mistaken?

    opened by huangjunxiong11 3
  • Demo error

    Demo error

    /Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:435: SourceChangeWarning: source code of class 'torch.nn.parallel.data_parallel.DataParallel' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:435: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) Traceback (most recent call last): File "demo.py", line 69, in checkpoint = torch.load(checkpoint) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 368, in load return _load(f, map_location, pickle_module) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 542, in _load result = unpickler.load() File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 505, in persistent_load data_type(size), location) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 114, in default_restore_location result = fn(storage, location) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 95, in _cuda_deserialize device = validate_cuda_device(location) File "/Users/7plus/opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py", line 79, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA ' RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU.

    opened by Mlt123 3
  • Deep-Image-Matting-v2 implemetation on Android

    Deep-Image-Matting-v2 implemetation on Android

    Hi, Thanks for you work! its looking awesome output. I want to integrate your demo into android project. Is it possible to integrate model into android Project? If it possible, then How can i integrate this model into android project? Can you please give some suggestions? Thanks in advance.

    opened by charlizesmith 3
  • unable to start training using pretrained weigths

    unable to start training using pretrained weigths

    whenever pre-trained weights are used for training the model using own dataset, the following error is occurring.

    python3 train.py --batch-size 4 --checkpoint checkpoint/BEST_checkpoint.tar

    /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.parallel.data_parallel.DataParallel' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.batchnorm.BatchNorm2d' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /usr/local/lib/python3.5/dist-packages/torch/serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.activation.ReLU' has changed. you can retrieve the original source code by accessing the object's source attribute or set torch.nn.Module.dump_patches = True and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) Traceback (most recent call last): File "train.py", line 180, in main() File "train.py", line 176, in main train_net(args) File "train.py", line 71, in train_net logger=logger) File "train.py", line 112, in train alpha_out = model(img) # [N, 3, 320, 320] File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 493, in call result = self.forward(*input, **kwargs) File "/usr/local/lib/python3.5/dist-packages/torch/nn/parallel/data_parallel.py", line 143, in forward if t.device != self.src_device_obj: File "/usr/local/lib/python3.5/dist-packages/torch/nn/modules/module.py", line 539, in getattr type(self).name, name)) AttributeError: 'DataParallel' object has no attribute 'src_device_obj'

    opened by dev-srikanth 3
  • v2 didn't performance well as v1?

    v2 didn't performance well as v1?

    Hi, thanks for your pretrained model! I test both your v1 pretrained model and v2 pretrained model , v2 is much faster than v1 , but I found it didn't performance well as v1. the image: WechatIMG226 the origin tri map: test7_tri the v1 output: WechatIMG225 the v2 output: test7_result

    do you know what's the problem?

    Thanks,

    opened by MarSaKi 3
  • Questions about the PyTorch version and an issue in training regarding to the batch size

    Questions about the PyTorch version and an issue in training regarding to the batch size

    Hi,

    Thank you for sharing your PyTorch version of reimplementation. Would you like to share the PyTorch version you used to development?

    I am using PyTorch 1.0.1, CUDA 9, two RTX 2080 Ti to run the 'train.py' since I see you use Data Parallel module to support multi-GPUs training. However, I encountered and the trackbacks are here:

    Traceback (most recent call last): File "train.py", line 171, in main() File "train.py", line 167, in main train_net(args) File "train.py", line 64, in train_net logger=logger) File "train.py", line 103, in train alpha_out = model(img) # [N, 3, 320, 320] File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 143, in forward outputs = self.parallel_apply(replicas, inputs, kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 153, in parallel_apply return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)]) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 83, in parallel_apply raise output File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/parallel/parallel_apply.py", line 59, in _worker output = module(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/Deep-Image-Matting-v2/models.py", line 127, in forward up4 = self.up4(up5, indices_4, unpool_shape4) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/Deep-Image-Matting-v2/models.py", line 87, in forward outputs = self.conv(outputs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/Deep-Image-Matting-v2/models.py", line 43, in forward outputs = self.cbr_unit(inputs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/container.py", line 92, in forward input = module(input) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/module.py", line 489, in call result = self.forward(*input, **kwargs) File "/home/mingfu/anaconda3/envs/tensorflow_gpu/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 320, in forward self.padding, self.dilation, self.groups) RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED

    I have tested the DATA PARALLELISM using the example here and it works well.

    opened by wuyujack 3
Owner
Yang Liu
Algorithm engineer
Yang Liu
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023