UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

Overview

UNION

Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please refer to the Paper List for more information about Open-eNded Language Generation (ONLG) tasks. Hopefully the paper list will help you know more about this field.

Contents

Prerequisites

The code is written in TensorFlow library. To use the program the following prerequisites need to be installed.

  • Python 3.7.0
  • tensorflow-gpu 1.14.0
  • numpy 1.18.1
  • regex 2020.2.20
  • nltk 3.4.5

Computing Infrastructure

We train UNION based on the platform:

  • OS: Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-98-generic x86_64)
  • GPU: NVIDIA TITAN Xp

Quick Start

1. Constructing Negative Samples

Execute the following command:

cd ./Data
python3 ./get_vocab.py your_mode
python3 ./gen_train_data.py your_mode
  • your_mode is roc for ROCStories corpus or wp for WritingPrompts dataset. Then the summary of vocabulary and the corresponding frequency and pos-tagging will be found under ROCStories/ini_data/entitiy_vocab.txt or WritingPrompts/ini_data/entity_vocab.txt.
  • Negative samples and human-written stories will be constructed based on the original training set. The training set will be found under ROCStories/train_data or WritingPrompts/train_data.
  • Note: currently only 10 samples of the full original data and training data are provided. The full data can be downloaded from THUcloud or GoogleDrive.

2. Training of UNION

Execute the following command:

python3 ./run_union.py --data_dir your_data_dir \
    --output_dir ./model/union \
    --task_name train \
    --init_checkpoint ./model/uncased_L-12_H-768_A-12/bert_model.ckpt
  • your_data_dir is ./Data/ROCStories or ./Data/WritingPrompts.
  • The initial checkpoint of BERT can be downloaded from bert. We use the uncased base version of BERT (about 110M parameters). We train the model for 40000 steps at most. The training process will task about 1~2 days.

3. Prediction with UNION

Execute the following command:

python3 ./run_union.py --data_dir your_data_dir \
    --output_dir ./model/output \
    --task_name pred \
    --init_checkpoint your_model_name
  • your_data_dir is ./Data/ROCStories or ./Data/WritingPrompts. If you want to evaluate your custom texts, you only need tp change your file format into ours.

  • your_model_name is ./model/union_roc/union_roc or ./model/union_wp/union_wp. The fine-tuned checkpoint can be downloaded from the following link:

Dataset Fine-tuned Model
ROCStories THUcloud; GoogleDrive
WritingPrompts THUcloud; GoogleDrive
  • The union score of the stories under your_data_dir/ant_data can be found under the output_dir ./model/output.

4. Correlation Calculation

Execute the following command:

python3 ./correlation.py your_mode

Then the correlation between the human judgements under your_data_dir/ant_data and the scores of metrics under your_data_dir/metric_output will be output. The figures under "./figure" show the score graph between metric scores and human judgments for ROCStories corpus.

Data Instruction for files under ./Data

├── Data
   └── `negation.txt`             # manually constructed negation word vocabulary.
   └── `conceptnet_antonym.txt`   # triples with antonym relations extracted from ConceptNet.
   └── `conceptnet_entity.csv`    # entities acquired from ConceptNet.
   └── `ROCStories`
       ├── `ant_data`        # sampled stories and corresponding human annotation.
              └── `ant_data.txt`        # include only binary annotation for reasonable(1) or unreasonable(0)
              └── `ant_data_all.txt`    # include the annotation for specific error types: reasonable(0), repeated plots(1), bad coherence(2), conflicting logic(3), chaotic scenes(4), and others(5). 
              └── `reference.txt`       # human-written stories with the same leading context with annotated stories.
              └── `reference_ipt.txt`
              └── `reference_opt.txt`
       ├── `ini_data`        # original dataset for training/validation/testing.
              └── `train.txt`
              └── `dev.txt`
              └── `test.txt`
              └── `entity_vocab.txt`    # generated by `get_vocab.py`, consisting of all the entities and the corresponding tagged POS followed by the mention frequency in the dataset.
       ├── `train_data`      # negative samples and corresponding human-written stories for training, which are constructed by `gen_train_data.py`.
              └── `train_human.txt`
              └── `train_negative.txt`
              └── `dev_human.txt`
              └── `dev_negative.txt`
              └── `test_human.txt`
              └── `test_negative.txt`
       ├── `metric_output`   # the scores of different metrics, which can be used to replicate the correlation in Table 5 of the paper. 
              └── `bleu.txt`
              └── `bleurt.txt`
              └── `ppl.txt`             # the sign of the result of Perplexity needs to be changed to get the result for *minus* Perplexity.
              └── `union.txt`
              └── `union_recon.txt`     # the ablated model without the reconstruction task
              └── ...
   └── `WritingPrompts`
       ├── ...
 
  • The annotated data file ant_data.txt and ant_data_all.txt are formatted as Story ID ||| Story ||| Seven Annotated Scores.
  • ant_data_all.txt is only available for ROCStories corpus. ant_data_all.txt is the same with ant_data.txt for WrintingPrompts dataset.

Citation

Please kindly cite our paper if this paper and the code are helpful.

@misc{guan2020union,
    title={UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation},
    author={Jian Guan and Minlie Huang},
    year={2020},
    eprint={2009.07602},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Conversational AI groups from Tsinghua University
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023