CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Related tags

Deep LearningCPF
Overview

Contact Potential Field

This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Guide to the Demo

1. Get our code:

$ git clone --recursive https://github.com/lixiny/CPF.git
$ cd CPF

2. Set up your new environment:

$ conda env create -f environment.yaml
$ conda activate cpf

3. Download assets files and put it in assets folder.

Download the MANO model files from official MANO website, and put it into assets/mano. We currently only use the MANO_RIGHT.pkl

Now your assets folder should look like this:

.
├── anchor/
│   ├── anchor_mapping_path.pkl
│   ├── anchor_weight.txt
│   ├── face_vertex_idx.txt
│   └── merged_vertex_assignment.txt
├── closed_hand/
│   └── hand_mesh_close.obj
├── fhbhands_fits/
│   ├── Subject_1/
│   │   ├── ...
│   ├── Subject_2/
|   ├── ...
├── hand_palm_full.txt
└── mano/
    ├── fhb_skel_centeridx9.pkl
    ├── info.txt
    ├── LICENSE.txt
    └── MANO_RIGHT.pkl

4. Download Dataset

First-Person Hand Action Benchmark (fhb)

Download and unzip the First-Person Hand Action Benchmark dataset following the official instructions to the data/fhbhands folder If everything is correct, your data/fhbhands should look like this:

.
├── action_object_info.txt
├── action_sequences_normalized/
├── change_log.txt
├── data_split_action_recognition.txt
├── file_system.jpg
├── Hand_pose_annotation_v1/
├── Object_6D_pose_annotation_v1_1/
├── Object_models/
├── Subjects_info/
├── Video_files/
├── Video_files_480/ # Optionally

Optionally, resize the images (speeds up training !) based on the handobjectconsist/reduce_fphab.py.

$ python reduce_fphab.py

Download our fhbhands_supp and place it at data/fhbhands_supp:

Download our fhbhands_example and place it at data/fhbhands_example. This fhbhands_example contains 10 samples that are designed to demonstrate our pipeline.

├── fhbhands/
├── fhbhands_supp/
│   ├── Object_models/
│   └── Object_models_binvox/
├── fhbhands_example/
│   ├── annotations/
│   ├── images/
│   ├── object_models/
│   └── sample_list.txt

HO3D

Download and unzip the HO3D dataset following the official instructions to the data/HO3D folder. if everything is correct, the HO3D & YCB folder in your data should look like this:

data/
├── HO3D/
│   ├── evaluation/
│   ├── evaluation.txt
│   ├── train/
│   └── train.txt
├── YCB_models/
│   ├── 002_master_chef_can/
│   ├── ...

Download our YCB_models_supp and place it at data/YCB_models_supp

Now the data folder should have a root structure like:

data/
├── fhbhands/
├── fhbhands_supp/
├── fhbhands_example/
├── HO3D/
├── YCB_models/
├── YCB_models_supp/

5. Download pre-trained checkpoints

download our pre-trained CPF_checkpoints, unzip it at the CPF_checkpoints folder:

CPF_checkpoints/
├── honet/
│   ├── fhb/
│   ├── ho3dofficial/
│   └── ho3dv1/
├── picr/
│   ├── fhb/
│   ├── ho3dofficial/
│   └── ho3dv1/

6. Launch visualization

We create a FHBExample dataset in hocontact/hodatasets/fhb_example.py that only contains 10 samples to demonstrate our pipeline. Notice: this demo requires active screen for visualizing. Press q in the "runtime hand" window to start fitting.

$ python training/run_demo.py \
    --gpu 0 \
    --init_ckpt CPF_checkpoints/picr/fhb/checkpoint_200.pth.tar \
    --honet_mano_fhb_hand

7. Test on full dataset (FHB, HO3D v1/v2)

We provide shell srcipts to test on the full dataset to approximately reproduce our results.

FHB

dump the results of HoNet and PiCR:

$ python training/dumppicr_dist.py \
    --gpu 0,1 \
    --dist_master_addr localhost \
    --dist_master_port 12355 \
    --exp_keyword fhb \
    --train_datasets fhb \
    --train_splits train \
    --val_dataset fhb \
    --val_split test \
    --split_mode actions \
    --batch_size 8 \
    --dump_eval \
    --dump \
    --vertex_contact_thresh 0.8 \
    --filter_thresh 5.0 \
    --dump_prefix common/picr \
    --init_ckpt CPF_checkpoints/picr/fhb/checkpoint_200.pth.tar

and reload the GeO optimizer:

# setting 1: hand-only
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python training/optimize.py \
    --n_workers 16 \
    --data_path common/picr/fhbhands/test_actions_mf1.0_rf0.25_fct5.0_ec \
    --mode hand

# setting 2: hand-obj
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python training/optimize.py \
    --n_workers 16 \
    --data_path common/picr/fhbhands/test_actions_mf1.0_rf0.25_fct5.0_ec \
    --mode hand_obj \
    --compensate_tsl

HO3Dv1

dump:

$ python training/dumppicr_dist.py  \
    --gpu 0,1 \
    --dist_master_addr localhost \
    --dist_master_port 12356 \
    --exp_keyword ho3dv1 \
    --train_datasets ho3d \
    --train_splits train \
    --val_dataset ho3d \
    --val_split test \
    --split_mode objects \
    --batch_size 4 \
    --dump_eval \
    --dump \
    --vertex_contact_thresh 0.8 \
    --filter_thresh 5.0 \
    --dump_prefix common/picr_ho3dv1 \
    --init_ckpt CPF_checkpoints/picr/ho3dv1/checkpoint_300.pth.tar

and reload optimizer:

# hand-only
$ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python training/optimize.py \
    --n_workers 24 \
    --data_path common/picr_ho3dv1/HO3D/test_objects_mf1_likev1_fct5.0_ec/ \
    --lr 1e-2 \
    --n_iter 500 \
    --hodata_no_use_cache \
    --lambda_contact_loss 10.0 \
    --lambda_repulsion_loss 4.0 \
    --repulsion_query 0.030 \
    --repulsion_threshold 0.080 \
    --mode hand

# hand-obj
$ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python training/optimize.py \
    --n_workers 24 \
    --data_path common/picr_ho3dv1/HO3D/test_objects_mf1_likev1_fct5.0_ec/ \
    --lr 1e-2 \
    --n_iter 500  \
    --hodata_no_use_cache \
    --lambda_contact_loss 10.0 \
    --lambda_repulsion_loss 6.0 \
    --repulsion_query 0.030 \
    --repulsion_threshold 0.080 \
    --mode hand_obj

HO3Dofficial

dump:

$ python training/dumppicr_dist.py  \
    --gpu 0,1 \
    --dist_master_addr localhost \
    --dist_master_port 12356 \
    --exp_keyword ho3dofficial \
    --train_datasets ho3d \
    --train_splits val \
    --val_dataset ho3d \
    --val_split test \
    --split_mode official \
    --batch_size 4 \
    --dump_eval \
    --dump \
    --test_dump \
    --vertex_contact_thresh 0.8 \
    --filter_thresh 5.0 \
    --dump_prefix common/picr_ho3dofficial \
    --init_ckpt CPF_checkpoints/picr/ho3dofficial/checkpoint_300.pth.tar

and reload optimizer:

$ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python training/optimize.py \
    --n_workers 24 \
    --data_path common/picr_ho3dofficial/HO3D/test_official_mf1_likev1_fct\(x\)_ec/  \
    --lr 1e-2 \
    --n_iter 500 \
    --hodata_no_use_cache \
    --lambda_contact_loss 10.0 \
    --lambda_repulsion_loss 2.0 \
    --repulsion_query 0.030 \
    --repulsion_threshold 0.080 \
    --mode hand_obj

Results

Testing on the full dataset may take a while ( 0.5 ~ 1.5 day ), thus we also provide our test results at fitting_res.txt.

K-MANO

We provide pytorch implementation of our Kinematic-chained MANO in lixiny/manopth, which is modified from the original hassony2/manopth. Thank Yana Hasson for providing the code.

Citation

If you find this work helpful, please consider citing us:

@article{yang2020cpf,
  title={CPF: Learning a Contact Potential Field to Model the Hand-object Interaction},
  author={Yang, Lixin and Zhan, Xinyu and Li, Kailin and Xu, Wenqiang and Li, Jiefeng and Lu, Cewu},
  journal={arXiv preprint arXiv:2012.00924},
  year={2020}
}

And if you have any question or suggestion, do not hesitate to contact me through siriusyang[at]sjtu[dot]edu[dot]cn.

Comments
  • FileNotFoundError: [Errno 2] No such file or directory: 'assets/mano/MANO_RIGHT.pkl'

    FileNotFoundError: [Errno 2] No such file or directory: 'assets/mano/MANO_RIGHT.pkl'

    I executed this command: python training/run_demo.py --gpu 0 --init_ckpt CPF_checkpoints/picr/fhb/checkpoint_200.pth.tar --honet_mano_fhb_hand

    image

    So, I moved assets/mano folder to the path CPF/manopth/mano/webuser/ But, I am still getting the error

    opened by anjugopinath 3
  •  AttributeError: 'ParsedRequirement' object has no attribute 'req'

    AttributeError: 'ParsedRequirement' object has no attribute 'req'

    Could you tell me which version of Anaconda to use please? I am getting the below error:

    neptune:/s/red/a/nobackup/vision/anju/CPF$ conda env create -f environment.yaml Collecting package metadata (repodata.json): done Solving environment: done

    ==> WARNING: A newer version of conda exists. <== current version: 4.9.2 latest version: 4.10.1

    Please update conda by running

    $ conda update -n base -c defaults conda
    

    Preparing transaction: done Verifying transaction: done Executing transaction: done Installing pip dependencies: | Ran pip subprocess with arguments: ['/s/chopin/a/grad/anju/.conda/envs/cpf/bin/python', '-m', 'pip', 'install', '-U', '-r', '/s/red/a/nobackup/vision/anju/CPF/condaenv.agtpjn0v.requirements.txt'] Pip subprocess output: Collecting git+https://github.com/utiasSTARS/liegroups.git (from -r /s/red/a/nobackup/vision/anju/CPF/condaenv.agtpjn0v.requirements.txt (line 1)) Cloning https://github.com/utiasSTARS/liegroups.git to /tmp/pip-req-build-ey_prxpa Obtaining file:///s/red/a/nobackup/vision/anju/CPF/manopth (from -r /s/red/a/nobackup/vision/anju/CPF/condaenv.agtpjn0v.requirements.txt (line 12)) Obtaining file:///s/red/a/nobackup/vision/anju/CPF (from -r /s/red/a/nobackup/vision/anju/CPF/condaenv.agtpjn0v.requirements.txt (line 13)) Collecting trimesh==3.8.10 Using cached trimesh-3.8.10-py3-none-any.whl (625 kB) Collecting open3d==0.10.0.0 Using cached open3d-0.10.0.0-cp38-cp38-manylinux1_x86_64.whl (4.7 MB) Collecting pyrender==0.1.43 Using cached pyrender-0.1.43-py3-none-any.whl (1.2 MB) Collecting scikit-learn==0.23.2 Using cached scikit_learn-0.23.2-cp38-cp38-manylinux1_x86_64.whl (6.8 MB) Collecting chumpy==0.69 Using cached chumpy-0.69.tar.gz (50 kB)

    Pip subprocess error: Running command git clone -q https://github.com/utiasSTARS/liegroups.git /tmp/pip-req-build-ey_prxpa ERROR: Command errored out with exit status 1: command: /s/chopin/a/grad/anju/.conda/envs/cpf/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-hnf78qhk/chumpy/setup.py'"'"'; file='"'"'/tmp/pip-install-hnf78qhk/chumpy/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(file);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, file, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-pip-egg-info-k7bp5gq7 cwd: /tmp/pip-install-hnf78qhk/chumpy/ Complete output (7 lines): Traceback (most recent call last): File "", line 1, in File "/tmp/pip-install-hnf78qhk/chumpy/setup.py", line 15, in install_requires = [str(ir.req) for ir in install_reqs] File "/tmp/pip-install-hnf78qhk/chumpy/setup.py", line 15, in install_requires = [str(ir.req) for ir in install_reqs] AttributeError: 'ParsedRequirement' object has no attribute 'req' ---------------------------------------- ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.

    failed

    CondaEnvException: Pip failed

    opened by anjugopinath 3
  • How to use CPF on both hands?

    How to use CPF on both hands?

    Thanks a lot for your great work! I have a question: Since you only use the MANO_RIGHT.pkl, it seems that CPF currently can only construct right hand model, right? What is needed to be modified to use CPF on both hands? Thanks!

    opened by buaacyw 3
  • Error when executing command

    Error when executing command "conda env create -f environment.yaml"

    Hi,

    I get the below error when executing the command "conda env create -f environment.yaml"

    CondaError: Downloaded bytes did not match Content-Length url: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/pytorch-1.6.0-py3.8_cuda10.2.89_cudnn7.6.5_0.tar.bz2 target_path: /home/anju/anaconda3/pkgs/pytorch-1.6.0-py3.8_cuda10.2.89_cudnn7.6.5_0.tar.bz2 Content-Length: 564734769 downloaded bytes: 221675180

    opened by anjugopinath 1
  • Some questions about PiQR code

    Some questions about PiQR code

    In the contacthead.py, the three decoders have different input dimension. self.vertex_contact_decoder = PointNetDecodeModule(self._concat_feat_dim, 1) self.contact_region_decoder = PointNetDecodeModule(self._concat_feat_dim + 1, self.n_region) self.anchor_elasti_decoder = PointNetDecodeModule(self._concat_feat_dim + 17, self.n_anchor)

    I am wondering if this part is used to predict selected anchor points within each subregion.

    The classification of subregions is obtained by contact_region_decoder and then the anchor points are predicted by anchor_elasti_decoder, is it right ?

    I am a little bit confused about it, because according to the paper, Anchor Elasticity (AE) represents the elasticities of the attractive springs. But in the code, the output of anchor_elasti_decoder has no relation to the elasticity parameter, I'm wondering if there's some part I've missed.

    Sorry for any trouble caused and thanks for your help!

    opened by lym29 0
  • what's the meaning of

    what's the meaning of "adapt"?

    I notice that there are hand_pose_axisang_adapt_np and hand_pose_axisang_np in your code. Could you please explain what's the difference between them?

    opened by Yamato-01 5
  • Expected code date ?

    Expected code date ?

    Hi !

    I just read through your paper, congratulation on the great work ! I love the fact that you provide an anatomically-constrained MANO, and the per-object-vertex hand part affinity.

    I look forward to the code realease :)

    Do you have a planned date in mind ?

    All the best,

    Yana

    opened by hassony2 4
Releases(v1.0.0)
Owner
Lixin YANG
PhD student @ SJTU. Computer Vision, Robotic Vision and Hand-obj Interaction
Lixin YANG
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022