IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

Overview

IDRLnet

License Python Documentation Status PyPI version DockerHub CodeFactor

IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inverse differential equations via physics-informed neural networks (PINN). IDRLnet is a flexible framework inspired by Nvidia Simnet.

Docs

Installation

Choose one of the following installation methods.

PyPI

Simple installation from PyPI.

pip install -U idrlnet

Note: To avoid version conflicts, please use some tools to create a virtual environment first.

Docker

Pull latest docker image from Dockerhub.

docker pull idrl/idrlnet:latest
docker run -it idrl/idrlnet:latest bash

Note: Available tags can be found in Dockerhub.

Anaconda

conda create -n idrlnet_dev python=3.8 -y
conda activate idrlnet_dev
pip install idrlnet

From Source

git clone https://github.com/idrl-lab/idrlnet
cd idrlnet
pip install -e .

Features

IDRLnet supports

  • complex domain geometries without mesh generation. Provided geometries include interval, triangle, rectangle, polygon, circle, sphere... Other geometries can be constructed using three boolean operations: union, difference, and intersection;

  • sampling in the interior of the defined geometry or on the boundary with given conditions.

  • enables the user code to be structured. Data sources, operations, constraints are all represented by Node. The graph will be automatically constructed via label symbols of each node. Getting rid of the explicit construction via explicit expressions, users model problems more naturally.

  • solving variational minimization problem;

  • solving integral differential equation;

  • adaptive resampling;

  • recover unknown parameters of PDEs from noisy measurement data.

It is also easy to customize IDRLnet to meet new demands.

Contributing to IDRLnet

First off, thanks for taking the time to contribute!

  • Reporting bugs. To report a bug, simply open an issue in the GitHub "Issues" section.

  • Suggesting enhancements. To submit an enhancement suggestion for IDRLnet, including completely new features and minor improvements to existing functionality, let us know by opening an issue.

  • Pull requests. If you made improvements to IDRLnet, fixed a bug, or had a new example, feel free to send us a pull-request.

  • Asking questions. To get help on how to use IDRLnet or its functionalities, you can as well open an issue.

  • Answering questions. If you know the answer to any question in the "Issues", you are welcomed to answer.

The Team

IDRLnet was originally developed by IDRL lab.

Citation

Feel free to cite this library.

@article{peng2021idrlnet,
      title={IDRLnet: A Physics-Informed Neural Network Library}, 
      author={Wei Peng and Jun Zhang and Weien Zhou and Xiaoyu Zhao and Wen Yao and Xiaoqian Chen},
      year={2021},
      eprint={2107.04320},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
You might also like...
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

Official code for Score-Based Generative Modeling through Stochastic Differential Equations
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).

Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

Comments
  • Do you plan to keep developing this library?

    Do you plan to keep developing this library?

    Hi,

    I'm a SimNet user, and I'm very interested in IDRLNet since the API seems similar, while the backend is PyTorch. Do you plan to keep developing IDRLNet?

    opened by AndreaPi 1
  • Feat: support DeepRitz

    Feat: support DeepRitz

    Weinan, E.; Yu, B. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 2018, 6 (1), 1–12.

    opened by weipengOO98 0
  •  GPU not available

    GPU not available

    Dear all, Thank you for this great contribution!

    I installed the library according to the instructions, but I received this warning: [23-Sep-22 22:28:21] [INFO] GPU not available

    Any suggestions on how to fix this?

    opened by engsbk 0
Releases(v0.1.0)
Owner
IDRL
Intelligent Design and Robust Learning Laboratory
IDRL
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022