Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Overview

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

This repository is the official implementation of Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes.

Requirements

To install requirements:

To use this repository you should download and install SmartHomeHARLib package

git clone [email protected]:dbouchabou/SmartHomeHARLib.git
pip install -r requirements.txt
cd SmartHomeHARLib
python setup.py develop

Embeddings Training

To train Embedding model(s) of the paper, run this command:

To train a Word2Vec model on a dataset, run this command:

python Word2vecEmbeddingExperimentations.py --d cairo

To train a ELMo model on a dataset, run this command:

python ELMoEmbeddingExperimentations.py --d cairo

Activity Sequences Classification Training And Evaluation

To train Classifier(s) model(s) of the paper, run this command:

python PretrainEmbeddingExperimentations.py --d cairo --e bi_lstm --c config/no_embedding_bi_lstm.json
python PretrainEmbeddingExperimentations.py --d cairo --e liciotti_bi_lstm --c config/liciotti_bi_lstm.json
python PretrainEmbeddingExperimentations.py --d cairo --e w2v_bi_lstm --c config/cairo_bi_lstm_w2v.json
python PretrainEmbeddingExperimentations.py --d cairo --e elmo_bi_lstm --c config/cairo_bi_lstm_elmo_concat.json

Results

Our model achieves the following performance on :

Three CASAS datasets

Aruba Aruba Aruba Aruba Milan Milan Milan Milan Cairo Cairo Cairo Cairo
No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo
Accuracy 95.01 96.52 96.59 96.76 82.24 90.54 88.33 90.14 81.68 84.99 82.27 90.12
Precision 94.69 96.11 96.23 96.43 82.28 90.08 88.28 90.20 80.22 83.17 82.04 88.41
Recall 95.01 96.50 96.59 96.69 82.24 90.45 88.33 90.31 81.68 82.98 82.27 87.59
F1 score 94.74 96.22 96.32 96.42 81.97 90.02 87.98 90.10 80.49 82.18 81.14 87.48
Balance Accuracy 77.73 79.96 81.06 79.98 67.77 74.31 73.61 78.25 70.09 77.52 69.38 87.00
Weighted Precision 79.75 82.30 82.97 88.64 79.6 82.03 84.42 87.56 68.45 80.03 77.56 86.83
Weighted Recall 77.73 80.71 81.06 79.17 67.77 75.51 73.62 78.75 70.09 73.82 69.38 84.78
Weighted F1 score 77.92 81.21 81.43 82.93 71.81 77.74 76.59 82.26 68.47 74.84 70.95 84.71
Owner
Damien Bouchabou
PhD Candidate in Machine Learning and Human Activities Recognition
Damien Bouchabou
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022