Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Overview

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

This repository is the official implementation of Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes.

Requirements

To install requirements:

To use this repository you should download and install SmartHomeHARLib package

git clone [email protected]:dbouchabou/SmartHomeHARLib.git
pip install -r requirements.txt
cd SmartHomeHARLib
python setup.py develop

Embeddings Training

To train Embedding model(s) of the paper, run this command:

To train a Word2Vec model on a dataset, run this command:

python Word2vecEmbeddingExperimentations.py --d cairo

To train a ELMo model on a dataset, run this command:

python ELMoEmbeddingExperimentations.py --d cairo

Activity Sequences Classification Training And Evaluation

To train Classifier(s) model(s) of the paper, run this command:

python PretrainEmbeddingExperimentations.py --d cairo --e bi_lstm --c config/no_embedding_bi_lstm.json
python PretrainEmbeddingExperimentations.py --d cairo --e liciotti_bi_lstm --c config/liciotti_bi_lstm.json
python PretrainEmbeddingExperimentations.py --d cairo --e w2v_bi_lstm --c config/cairo_bi_lstm_w2v.json
python PretrainEmbeddingExperimentations.py --d cairo --e elmo_bi_lstm --c config/cairo_bi_lstm_elmo_concat.json

Results

Our model achieves the following performance on :

Three CASAS datasets

Aruba Aruba Aruba Aruba Milan Milan Milan Milan Cairo Cairo Cairo Cairo
No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo No Embedding Liciotti W2V ELMo
Accuracy 95.01 96.52 96.59 96.76 82.24 90.54 88.33 90.14 81.68 84.99 82.27 90.12
Precision 94.69 96.11 96.23 96.43 82.28 90.08 88.28 90.20 80.22 83.17 82.04 88.41
Recall 95.01 96.50 96.59 96.69 82.24 90.45 88.33 90.31 81.68 82.98 82.27 87.59
F1 score 94.74 96.22 96.32 96.42 81.97 90.02 87.98 90.10 80.49 82.18 81.14 87.48
Balance Accuracy 77.73 79.96 81.06 79.98 67.77 74.31 73.61 78.25 70.09 77.52 69.38 87.00
Weighted Precision 79.75 82.30 82.97 88.64 79.6 82.03 84.42 87.56 68.45 80.03 77.56 86.83
Weighted Recall 77.73 80.71 81.06 79.17 67.77 75.51 73.62 78.75 70.09 73.82 69.38 84.78
Weighted F1 score 77.92 81.21 81.43 82.93 71.81 77.74 76.59 82.26 68.47 74.84 70.95 84.71
Owner
Damien Bouchabou
PhD Candidate in Machine Learning and Human Activities Recognition
Damien Bouchabou
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022