Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Overview

arXiv GitHub Stars visitors

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

This is the official implementation of IA-SSD (CVPR 2022), a simple and highly efficient point-based detector for 3D LiDAR point clouds. For more details, please refer to:

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds
Yifan Zhang, Qingyong Hu*, Guoquan Xu, Yanxin Ma, Jianwei Wan, Yulan Guo

[Paper] [Video]

Getting Started

Installation

a. Clone this repository

git clone https://github.com/yifanzhang713/IA-SSD.git && cd IA-SSD

b. Configure the environment

We have tested this project with the following environments:

  • Ubuntu18.04/20.04
  • Python = 3.7
  • PyTorch = 1.1
  • CUDA = 10.0
  • CMake >= 3.13
  • spconv = 1.0
    # install spconv=1.0 library
    git clone https://github.com/yifanzhang713/spconv1.0.git
    cd spconv1.0
    sudo apt-get install libboostall-dev
    python setup.py bdist_wheel
    pip install ./dist/spconv-1.0*   # wheel file name may be different
    cd ..

*You are encouraged to try to install higher versions above, please refer to the official github repository for more information. Note that the maximum number of parallel frames during inference might be slightly decrease due to the larger initial GPU memory footprint with updated Pytorch version.

c. Install pcdet toolbox.

pip install -r requirements.txt
python setup.py develop

d. Prepare the datasets.

Download the official KITTI with road planes and Waymo datasets, then organize the unzipped files as follows:

IA-SSD
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   ├── testing
│   │   ├── calib & velodyne & image_2
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data_v0_5_0
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1/
│   │   │── waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_train.pkl (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_val.pkl (optional)
├── pcdet
├── tools

Generate the data infos by running the following commands:

# KITTI dataset
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

# Waymo dataset
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Quick Inference

We provide the pre-trained weight file so you can just run with that:

cd tools 
# To achieve fully GPU memory footprint (NVIDIA RTX2080Ti, 11GB).
python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size 100 \
    --ckpt IA-SSD.pth --set MODEL.POST_PROCESSING.RECALL_MODE 'speed'

# To reduce the pressure on the CPU during preprocessing, a suitable batchsize is recommended, e.g. 16. (Over 5 batches per second on RTX2080Ti)
python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size 16 \
    --ckpt IA-SSD.pth --set MODEL.POST_PROCESSING.RECALL_MODE 'speed' 
  • Then detailed inference results can be found here.

Training

The configuration files are in tools/cfgs/kitti_models/IA-SSD.yaml and tools/cfgs/waymo_models/IA-SSD.yaml, and the training scripts are in tools/scripts.

Train with single or multiple GPUs: (e.g., KITTI dataset)

python train.py --cfg_file cfgs/kitti_models/IA-SSD.yaml

# or 

sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file cfgs/kitti_models/IA-SSD.yaml

Evaluation

Evaluate with single or multiple GPUs: (e.g., KITTI dataset)

python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml  --batch_size ${BATCH_SIZE} --ckpt ${PTH_FILE}

# or

sh scripts/dist_test.sh ${NUM_GPUS} \
    --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size ${BATCH_SIZE} --ckpt ${PTH_FILE}

Experimental results

KITTI dataset

Quantitative results of different approaches on KITTI dataset (test set):

Qualitative results of our IA-SSD on KITTI dataset:

z z
z z

Quantitative results of different approaches on Waymo dataset (validation set):

Qualitative results of our IA-SSD on Waymo dataset:

z z
z z

Quantitative results of different approaches on ONCE dataset (validation set):

Qualitative result of our IA-SSD on ONCE dataset:

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{zhang2022not,
  title={Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds},
  author={Zhang, Yifan and Hu, Qingyong and Xu, Guoquan and Ma, Yanxin and Wan, Jianwei and Guo, Yulan},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

  • This work is built upon the OpenPCDet (version 0.5), an open source toolbox for LiDAR-based 3D scene perception. Please refer to the official github repository for more information.

  • Parts of our Code refer to 3DSSD-pytorch-openPCDet library and the the recent work SASA.

License

This project is released under the Apache 2.0 license.

Related Repos

  1. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds GitHub stars
  2. SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds GitHub stars
  3. 3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds GitHub stars
  4. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration GitHub stars
  5. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds GitHub stars
  6. SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey GitHub stars
Owner
Yifan Zhang
Yifan Zhang
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022