Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Overview

Lossy Compression for Lossless Prediction License: MIT Python 3.8+

Using: Using

Training: Training

This repostiory contains our implementation of the paper: Lossy Compression for Lossless Prediction. That formalizes and empirically inverstigates unsupervised training for task-specific compressors.

Using the compressor

Using

If you want to use our compressor directly the easiest is to use the model from torch hub as seen in the google colab (or notebooks/Hub.ipynb) or th example below.

Installation details
pip install torch torchvision tqdm numpy compressai sklearn git+https://github.com/openai/CLIP.git

Using pytorch>1.7.1 : CLIP forces pytorch version 1.7.1, this is because it needs this version to use JIT. If you don't need JIT (no JIT by default) you can alctually use more recent versions of torch and torchvision pip install -U torch torchvision. Make sure to update after having isntalled CLIP.


import time

import torch
from sklearn.svm import LinearSVC
from torchvision.datasets import STL10

DATA_DIR = "data/"

# list available compressors. b01 compresses the most (b01 > b005 > b001)
torch.hub.list('YannDubs/lossyless:main') 
# ['clip_compressor_b001', 'clip_compressor_b005', 'clip_compressor_b01']

# Load the desired compressor and transformation to apply to images (by default on GPU if available)
compressor, transform = torch.hub.load('YannDubs/lossyless:main','clip_compressor_b005')

# Load some data to compress and apply transformation
stl10_train = STL10(
    DATA_DIR, download=True, split="train", transform=transform
)
stl10_test = STL10(
    DATA_DIR, download=True, split="test", transform=transform
)

# Compresses the datasets and save them to file (this requires GPU)
# Rate: 1506.50 bits/img | Encoding: 347.82 img/sec
compressor.compress_dataset(
    stl10_train,
    f"{DATA_DIR}/stl10_train_Z.bin",
    label_file=f"{DATA_DIR}/stl10_train_Y.npy",
)
compressor.compress_dataset(
    stl10_test,
    f"{DATA_DIR}/stl10_test_Z.bin",
    label_file=f"{DATA_DIR}/stl10_test_Y.npy",
)

# Load and decompress the datasets from file the datasets (does not require GPU)
# Decoding: 1062.38 img/sec
Z_train, Y_train = compressor.decompress_dataset(
    f"{DATA_DIR}/stl10_train_Z.bin", label_file=f"{DATA_DIR}/stl10_train_Y.npy"
)
Z_test, Y_test = compressor.decompress_dataset(
    f"{DATA_DIR}/stl10_test_Z.bin", label_file=f"{DATA_DIR}/stl10_test_Y.npy"
)

# Downstream STL10 evaluation. Accuracy: 98.65% | Training time: 0.5 sec
clf = LinearSVC(C=7e-3)
start = time.time()
clf.fit(Z_train, Y_train)
delta_time = time.time() - start
acc = clf.score(Z_test, Y_test)
print(
    f"Downstream STL10 accuracy: {acc*100:.2f}%.  \t Training time: {delta_time:.1f} "
)

Minimal training code

Training

If your goal is to look at a minimal version of the code to simply understand what is going on, I would highly recommend starting from notebooks/minimal_compressor.ipynb (or google colab link above). This is a notebook version of the code provided in Appendix E.7. of the paper, to quickly train and evaluate our compressor.

Installation details
  1. pip install git+https://github.com/openai/CLIP.git
  2. pip uninstall -y torchtext (probably not necessary but can cause issues if got installed as wrong pytorch version)
  3. pip install scikit-learn==0.24.2 lightning-bolts==0.3.4 compressai==1.1.5 pytorch-lightning==1.3.8

Using pytorch>1.7.1 : CLIP forces pytorch version 1.7.1 you should be able to use a more recent versions. E.g.:

  1. pip install git+https://github.com/openai/CLIP.git
  2. pip install -U torch torchvision scikit-learn lightning-bolts compressai pytorch-lightning

Results from the paper

We provide scripts to essentially replicate some results from the paper. The exact results will be a little different as we simplified and cleaned some of the code to help readability. All scripts can be found in bin and run using the command bin/*/<experiment>.sh.

Installation details
  1. Clone repository
  2. Install PyTorch >= 1.7
  3. pip install -r requirements.txt

Other installation

  • For the bare minimum packages: use pip install -r requirements_mini.txt instead.
  • For conda: use conda env update --file requirements/environment.yaml.
  • For docker: we provide a dockerfile at requirements/Dockerfile.

Notes

  • CLIP forces pytorch version 1.7.1, this is because it needs this version to use JIT. We don't use JIT so you can alctually use more recent versions of torch and torchvision pip install -U torch torchvision.
  • For better logging: hydra and pytorch lightning logging don't work great together, to have a better logging experience you should comment out the folowing lines in pytorch_lightning/__init__.py :
if not _root_logger.hasHandlers():
     _logger.addHandler(logging.StreamHandler())
     _logger.propagate = False

Test installation

To test your installation and that everything works as desired you can run bin/test.sh, which will run an epoch of BICNE and VIC on MNIST.


Scripts details

All scripts can be found in bin and run using the command bin/*/<experiment>.sh. This will save all results, checkpoints, logs... The most important results (including summary resutls and figures) will be saved at results/exp_<experiment>. Most important are the summarized metrics results/exp_<experiment>*/summarized_metrics_merged.csv and any figures results/exp_<experiment>*/*.png.

The key experiments that that do not require very large compute are:

  • VIC/VAE on rotation invariant Banana distribution: bin/banana/banana_viz_VIC.sh
  • VIC/VAE on augmentation invariant MNIST: bin/mnist/augmist_viz_VIC.sh
  • CLIP experiments: bin/clip/main_linear.sh

By default all scripts will log results on weights and biases. If you have an account (or make one) you should set your username in conf/user.yaml after wandb_entity:, the passwod should be set directly in your environment variables. If you prefer not logging, you can use the command bin/*/<experiment>.sh -a logger=csv which changes (-a is for append) the default wandb logger to a csv logger.

Generally speaking you can change any of the parameters either directly in conf/**/<file>.yaml or by adding -a to the script. We are using Hydra to manage our configurations, refer to their documentation if something is unclear.

If you are using Slurm you can submit directly the script on servers by adding a config file under conf/slurm/<myserver>.yaml, and then running the script as bin/*/<experiment>.sh -s <myserver>. For example configurations files for slurm see conf/slurm/vector.yaml or conf/slurm/learnfair.yaml. For more information check the documentation from submitit's plugin which we are using.


VIC/VAE on rotation invariant Banana

Command:

bin/banana/banana_viz_VIC.sh

The following figures are saved automatically at results/exp_banana_viz_VIC/**/quantization.png. On the left we see the quantization of the Banana distribution by a standard compressor (called VAE in code but VC in paper). On the right, by our (rotation) invariant compressor (VIC).

Standard compression of Banana Invariant compression of Banana

VIC/VAE on augmentend MNIST

Command:

bin/banana/augmnist_viz_VIC.sh

The following figure is saved automatically at results/exp_augmnist_viz_VIC/**/rec_imgs.png. It shows source augmented MNIST images as well as the reconstructions using our invariant compressor.

Invariant compression of augmented MNIST

CLIP compressor

Command:

bin/clip/main_small.sh

The following table comes directly from the results which are automatically saved at results/exp_clip_bottleneck_linear_eval/**/datapred_*/**/results_predictor.csv. It shows the result of compression from our CLIP compressor on many datasets.

Cars196 STL10 Caltech101 Food101 PCam Pets37 CIFAR10 CIFAR100
Rate [bits] 1471 1342 1340 1266 1491 1209 1407 1413
Test Acc. [%] 80.3 98.5 93.3 83.8 81.1 88.8 94.6 79.0

Note: ImageNet is too large for training a SVM using SKlearn. You need to run MLP evaluation with bin/clip/clip_bottleneck_mlp_eval. Also you have to download ImageNet manually.

Cite

You can read the full paper here. Please cite our paper if you use our model:

@inproceedings{
    dubois2021lossy,
    title={Lossy Compression for Lossless Prediction},
    author={Yann Dubois and Benjamin Bloem-Reddy and Karen Ullrich and Chris J. Maddison},
    booktitle={Neural Compression: From Information Theory to Applications -- Workshop @ ICLR 2021},
    year={2021},
    url={https://arxiv.org/abs/2106.10800}
}
You might also like...
PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Open-source code for Generic Grouping Network (GGN, CVPR 2022)
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Comments
  • Karen's experiments

    Karen's experiments

    Changes:

    • val_equivalence flag allows to have different equivalences at test time -> if used will automatically set is_augment_val=True
    • adding the option of having joint augmentations (specific. rotation)
    opened by KarenUllrich 2
  • Ever Use a Projection Head?

    Ever Use a Projection Head?

    Hi Yann,

    Did you ever use a project head [1] (i.e., a multi-layer perceptron) to transform the output of the encoder?

    If I understand correctly, you directly feed the output of the encoder (e.g., a pre-trained ResNet model) into the rate estimator?

    Thanks!

    Reference:

    [1] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.

    opened by DarrenZhang01 1
  • Efficient way to integrate lossyless into a PyTorch Dataset subclass

    Efficient way to integrate lossyless into a PyTorch Dataset subclass

    Hey @YannDubs,

    I recently discovered your paper and find the idea very interesting. Therefore, I would like to integrate lossyless into a project I am currently working on. However, there are two requirements/presuppositions in my project that your compressor on PyTorch Hub does not cover as far as I understand it:

    • I assume that the training data do not fit into memory so I cannot decompress the entire dataset at once.
    • Because I cannot load the entire data into memory and shuffle them there, I need access to individual samples of the dataset (for random permutations) without touching the rest of the data (or as little as possible).

    Basically, I would like to integrate lossyless into a subclass of PyTorch's Dataset that implements the __getitem__(index) interface. Before I start experimenting on my own and potentially overlook something that you already thought about, I wanted to ask you if you already considered approaches how to integrate your idea into a PyTorch Dataset.

    Looking forward to a discussion!

    opened by lbhm 5
Owner
Yann Dubois
ML research
Yann Dubois
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023