Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Overview

Lossy Compression for Lossless Prediction License: MIT Python 3.8+

Using: Using

Training: Training

This repostiory contains our implementation of the paper: Lossy Compression for Lossless Prediction. That formalizes and empirically inverstigates unsupervised training for task-specific compressors.

Using the compressor

Using

If you want to use our compressor directly the easiest is to use the model from torch hub as seen in the google colab (or notebooks/Hub.ipynb) or th example below.

Installation details
pip install torch torchvision tqdm numpy compressai sklearn git+https://github.com/openai/CLIP.git

Using pytorch>1.7.1 : CLIP forces pytorch version 1.7.1, this is because it needs this version to use JIT. If you don't need JIT (no JIT by default) you can alctually use more recent versions of torch and torchvision pip install -U torch torchvision. Make sure to update after having isntalled CLIP.


import time

import torch
from sklearn.svm import LinearSVC
from torchvision.datasets import STL10

DATA_DIR = "data/"

# list available compressors. b01 compresses the most (b01 > b005 > b001)
torch.hub.list('YannDubs/lossyless:main') 
# ['clip_compressor_b001', 'clip_compressor_b005', 'clip_compressor_b01']

# Load the desired compressor and transformation to apply to images (by default on GPU if available)
compressor, transform = torch.hub.load('YannDubs/lossyless:main','clip_compressor_b005')

# Load some data to compress and apply transformation
stl10_train = STL10(
    DATA_DIR, download=True, split="train", transform=transform
)
stl10_test = STL10(
    DATA_DIR, download=True, split="test", transform=transform
)

# Compresses the datasets and save them to file (this requires GPU)
# Rate: 1506.50 bits/img | Encoding: 347.82 img/sec
compressor.compress_dataset(
    stl10_train,
    f"{DATA_DIR}/stl10_train_Z.bin",
    label_file=f"{DATA_DIR}/stl10_train_Y.npy",
)
compressor.compress_dataset(
    stl10_test,
    f"{DATA_DIR}/stl10_test_Z.bin",
    label_file=f"{DATA_DIR}/stl10_test_Y.npy",
)

# Load and decompress the datasets from file the datasets (does not require GPU)
# Decoding: 1062.38 img/sec
Z_train, Y_train = compressor.decompress_dataset(
    f"{DATA_DIR}/stl10_train_Z.bin", label_file=f"{DATA_DIR}/stl10_train_Y.npy"
)
Z_test, Y_test = compressor.decompress_dataset(
    f"{DATA_DIR}/stl10_test_Z.bin", label_file=f"{DATA_DIR}/stl10_test_Y.npy"
)

# Downstream STL10 evaluation. Accuracy: 98.65% | Training time: 0.5 sec
clf = LinearSVC(C=7e-3)
start = time.time()
clf.fit(Z_train, Y_train)
delta_time = time.time() - start
acc = clf.score(Z_test, Y_test)
print(
    f"Downstream STL10 accuracy: {acc*100:.2f}%.  \t Training time: {delta_time:.1f} "
)

Minimal training code

Training

If your goal is to look at a minimal version of the code to simply understand what is going on, I would highly recommend starting from notebooks/minimal_compressor.ipynb (or google colab link above). This is a notebook version of the code provided in Appendix E.7. of the paper, to quickly train and evaluate our compressor.

Installation details
  1. pip install git+https://github.com/openai/CLIP.git
  2. pip uninstall -y torchtext (probably not necessary but can cause issues if got installed as wrong pytorch version)
  3. pip install scikit-learn==0.24.2 lightning-bolts==0.3.4 compressai==1.1.5 pytorch-lightning==1.3.8

Using pytorch>1.7.1 : CLIP forces pytorch version 1.7.1 you should be able to use a more recent versions. E.g.:

  1. pip install git+https://github.com/openai/CLIP.git
  2. pip install -U torch torchvision scikit-learn lightning-bolts compressai pytorch-lightning

Results from the paper

We provide scripts to essentially replicate some results from the paper. The exact results will be a little different as we simplified and cleaned some of the code to help readability. All scripts can be found in bin and run using the command bin/*/<experiment>.sh.

Installation details
  1. Clone repository
  2. Install PyTorch >= 1.7
  3. pip install -r requirements.txt

Other installation

  • For the bare minimum packages: use pip install -r requirements_mini.txt instead.
  • For conda: use conda env update --file requirements/environment.yaml.
  • For docker: we provide a dockerfile at requirements/Dockerfile.

Notes

  • CLIP forces pytorch version 1.7.1, this is because it needs this version to use JIT. We don't use JIT so you can alctually use more recent versions of torch and torchvision pip install -U torch torchvision.
  • For better logging: hydra and pytorch lightning logging don't work great together, to have a better logging experience you should comment out the folowing lines in pytorch_lightning/__init__.py :
if not _root_logger.hasHandlers():
     _logger.addHandler(logging.StreamHandler())
     _logger.propagate = False

Test installation

To test your installation and that everything works as desired you can run bin/test.sh, which will run an epoch of BICNE and VIC on MNIST.


Scripts details

All scripts can be found in bin and run using the command bin/*/<experiment>.sh. This will save all results, checkpoints, logs... The most important results (including summary resutls and figures) will be saved at results/exp_<experiment>. Most important are the summarized metrics results/exp_<experiment>*/summarized_metrics_merged.csv and any figures results/exp_<experiment>*/*.png.

The key experiments that that do not require very large compute are:

  • VIC/VAE on rotation invariant Banana distribution: bin/banana/banana_viz_VIC.sh
  • VIC/VAE on augmentation invariant MNIST: bin/mnist/augmist_viz_VIC.sh
  • CLIP experiments: bin/clip/main_linear.sh

By default all scripts will log results on weights and biases. If you have an account (or make one) you should set your username in conf/user.yaml after wandb_entity:, the passwod should be set directly in your environment variables. If you prefer not logging, you can use the command bin/*/<experiment>.sh -a logger=csv which changes (-a is for append) the default wandb logger to a csv logger.

Generally speaking you can change any of the parameters either directly in conf/**/<file>.yaml or by adding -a to the script. We are using Hydra to manage our configurations, refer to their documentation if something is unclear.

If you are using Slurm you can submit directly the script on servers by adding a config file under conf/slurm/<myserver>.yaml, and then running the script as bin/*/<experiment>.sh -s <myserver>. For example configurations files for slurm see conf/slurm/vector.yaml or conf/slurm/learnfair.yaml. For more information check the documentation from submitit's plugin which we are using.


VIC/VAE on rotation invariant Banana

Command:

bin/banana/banana_viz_VIC.sh

The following figures are saved automatically at results/exp_banana_viz_VIC/**/quantization.png. On the left we see the quantization of the Banana distribution by a standard compressor (called VAE in code but VC in paper). On the right, by our (rotation) invariant compressor (VIC).

Standard compression of Banana Invariant compression of Banana

VIC/VAE on augmentend MNIST

Command:

bin/banana/augmnist_viz_VIC.sh

The following figure is saved automatically at results/exp_augmnist_viz_VIC/**/rec_imgs.png. It shows source augmented MNIST images as well as the reconstructions using our invariant compressor.

Invariant compression of augmented MNIST

CLIP compressor

Command:

bin/clip/main_small.sh

The following table comes directly from the results which are automatically saved at results/exp_clip_bottleneck_linear_eval/**/datapred_*/**/results_predictor.csv. It shows the result of compression from our CLIP compressor on many datasets.

Cars196 STL10 Caltech101 Food101 PCam Pets37 CIFAR10 CIFAR100
Rate [bits] 1471 1342 1340 1266 1491 1209 1407 1413
Test Acc. [%] 80.3 98.5 93.3 83.8 81.1 88.8 94.6 79.0

Note: ImageNet is too large for training a SVM using SKlearn. You need to run MLP evaluation with bin/clip/clip_bottleneck_mlp_eval. Also you have to download ImageNet manually.

Cite

You can read the full paper here. Please cite our paper if you use our model:

@inproceedings{
    dubois2021lossy,
    title={Lossy Compression for Lossless Prediction},
    author={Yann Dubois and Benjamin Bloem-Reddy and Karen Ullrich and Chris J. Maddison},
    booktitle={Neural Compression: From Information Theory to Applications -- Workshop @ ICLR 2021},
    year={2021},
    url={https://arxiv.org/abs/2106.10800}
}
You might also like...
PyTorch code for our ECCV 2018 paper
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Open-source code for Generic Grouping Network (GGN, CVPR 2022)
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Comments
  • Karen's experiments

    Karen's experiments

    Changes:

    • val_equivalence flag allows to have different equivalences at test time -> if used will automatically set is_augment_val=True
    • adding the option of having joint augmentations (specific. rotation)
    opened by KarenUllrich 2
  • Ever Use a Projection Head?

    Ever Use a Projection Head?

    Hi Yann,

    Did you ever use a project head [1] (i.e., a multi-layer perceptron) to transform the output of the encoder?

    If I understand correctly, you directly feed the output of the encoder (e.g., a pre-trained ResNet model) into the rate estimator?

    Thanks!

    Reference:

    [1] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.

    opened by DarrenZhang01 1
  • Efficient way to integrate lossyless into a PyTorch Dataset subclass

    Efficient way to integrate lossyless into a PyTorch Dataset subclass

    Hey @YannDubs,

    I recently discovered your paper and find the idea very interesting. Therefore, I would like to integrate lossyless into a project I am currently working on. However, there are two requirements/presuppositions in my project that your compressor on PyTorch Hub does not cover as far as I understand it:

    • I assume that the training data do not fit into memory so I cannot decompress the entire dataset at once.
    • Because I cannot load the entire data into memory and shuffle them there, I need access to individual samples of the dataset (for random permutations) without touching the rest of the data (or as little as possible).

    Basically, I would like to integrate lossyless into a subclass of PyTorch's Dataset that implements the __getitem__(index) interface. Before I start experimenting on my own and potentially overlook something that you already thought about, I wanted to ask you if you already considered approaches how to integrate your idea into a PyTorch Dataset.

    Looking forward to a discussion!

    opened by lbhm 5
Owner
Yann Dubois
ML research
Yann Dubois
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
113 Nov 28, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022