Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

Overview

AlbUNet-1D-2D-Tensorflow-Keras

This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed in Tensorflow-Keras. The code supports Deep Supervision, AutoEncoder mode, Guided Attention and other options. The segmentation models can be used for binary or multiclass segmentation, or for regression tasks.

Models supported [1]

  1. AlbUNet18
  2. AlbUNet34
  3. AlbUNet50
  4. AlbUNet101
  5. AlbUNet152

AlbUNet

AlbUNet has a ResNet based Encoder and traditional UNet based Decoder, as shown in the Figure below for ALbUNet34, which uses ResNet34 as the Encoder.
AlbUNet Architecture
AlbUNet Architecture

Supported Features

The speciality about this model is its flexibility, such as:

  1. The user can choose any of the 5 available AlbUNet variants for either 1D or 2D Segmentation tasks.
  2. The models can be used for Binary or Multi-Class Classification, or Regression type Segmentation tasks.
  3. The models allow Deep Supervision [2] with flexibility during Segmentation.
  4. The segmentation models can also be used as Autoencoders [3] for Feature Extraction.
  5. The Segmentation Models can be Attention Guided [4].
  6. Number of input kernel/filter, commonly known as the Width of the model can be varied.
  7. Number of classes for Classification tasks and number of extracted features for Regression tasks can be varied.
  8. Number of Channels in the Input Dataset can be varied.

Mentionable that the 2D version of AlbUNet can also be used in Transfer Learning from previously trained weights (e.g., ImageNet), just the encoder blocks should be replaced with the trained model layers.

References

[1] A. Shvets, V. Iglovikov, A. Rakhlin, and A. A. Kalinin, “Angiodysplasia detection and localization using deep convolutional neural networks,” arXiv.org, 21-Apr-2018. [Online]. Available: https://arxiv.org/abs/1804.08024. [2] Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2021). UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. Arxiv-vanity.com. Retrieved 30 August 2021, from https://www.arxiv-vanity.com/papers/1912.05074/.
[3] Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2021). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv.org. Retrieved 30 August 2021, from https://arxiv.org/abs/1807.10165.
[4] M. Noori, A. Bahri, and K. Mohammadi, “Attention-guided version of 2D UNET for automatic brain tumor segmentation,” arXiv.org, 04-Apr-2020. [Online]. Available: https://arxiv.org/abs/2004.02009.

Owner
Sakib Mahmud
Research Assistant | Electrical Engineer | Machine Learning Engineer
Sakib Mahmud
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022