Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Overview

Fast mesh denoising with data driven normal filtering using deep variational autoencoders

This is an implementation for the paper entitled "Fast mesh denoising with data driven normal filtering using deep variational autoencoders" published in IEEE Transactions on Industrial Informatics 10.1109/TII.2020.3000491

https://ieeexplore.ieee.org/document/9110709

Description

Recent advances in 3D scanning technology have enabled the deployment of 3D models in various industrial applications like digital twins, remote inspection and reverse engineering. Despite their evolving performance, 3D scanners, still introduce noise and artifacts in the acquired dense models. In this work, we propose a fast and robust denoising method for dense 3D scanned industrial models. The proposed approach employs conditional variational autoencoders to effectively filter face normals. Training and inference are performed in a sliding patch setup reducing the size of the required training data and execution times. We conducted extensive evaluation studies using 3D scanned and CAD models. The results verify plausible denoising outcomes, demonstrating similar or higher reconstruction accuracy, compared to other state-of-the-art approaches. Specifically, for 3D models with more than 1e4 faces, the presented pipeline is twice as fast as methods with equivalent reconstruction error.

Requirements

  1. Tensorflow
  2. Numpy
  3. Pickle
  4. Matplotlib
  5. SKLearn
  6. Scipy
  7. Gzip
  8. Random

Overview

Pipeline of the proposed approach and training scheme of the CVAE Pipeline

Training

Running the code

Train with groundtruth data

 python fastMeshDenoising_CVAE_Train.py

Inference

python fastMeshDenoising_CVAE_Test_On_The_Fly.py

The generated model can be found in

./results/Comparison/Denoised/CVAE/

Notes

Repository with full code and data

https://gitlab.com/vvr/snousias/fast-mesh-denoising

Structure

./data/
./images/
./meshes/
./results/
./sessions/
commonReadModelV3.py
CVAE.py
CVAEplot.py
CVAEutils.py
fastMeshDenoising*.py

Select a model from a list of models

Models in .obj format are found in./meshes/

trainModels = [
           'block',
           'casting',
           'coverrear_Lp',
           'ccylinder',
           'eight',
           'joint',
           'part-Lp',
           'cad',
           'fandisk',
           'chinese-lion',
           'sculpt',
           'rockerarm',
           'smooth-feature',
           'trim-star',
           'gear',
           'boy01-scanned',
           'boy02-scanned',
           'pyramid-scanned',
           'girl-scanned',
           'cone-scanned',
           'sharp-sphere',
           'leg',
           'screwdriver',
           'carter100K',
           'pulley',
           'pulley-defects'
           ]

Training set

Training set comprises of the first eight models in fastMeshDenoising_Config_Train.py

trainSet=range(0, 8)

###Testing model Testing model is defined by flag "selectedModel" in fastMeshDenoising_CVAE_Test_On_The_Fly.py

selectedModel = 10

Citation info

Citation

S. Nousias, G. Arvanitis, A. Lalos, and K. Moustakas, “Fast mesh denoising with data driven normal filtering using deep variational autoencoders,” IEEE Trans. Ind. Informatics, pp. 1–1, 2020.

Bibtex

@article{Nousias2020,
    author = {Nousias, Stavros and Arvanitis, Gerasimos and Lalos, Aris and Moustakas, Konstantinos},
    doi = {10.1109/TII.2020.3000491},
    issn = {1551-3203},
    journal = {IEEE Transactions on Industrial Informatics},
    pages = {1--1},
    title = {{Fast mesh denoising with data driven normal filtering using deep variational autoencoders}},
    url = {https://ieeexplore.ieee.org/document/9110709/},
    year = {2020}
    }
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022