Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Overview

Fast mesh denoising with data driven normal filtering using deep variational autoencoders

This is an implementation for the paper entitled "Fast mesh denoising with data driven normal filtering using deep variational autoencoders" published in IEEE Transactions on Industrial Informatics 10.1109/TII.2020.3000491

https://ieeexplore.ieee.org/document/9110709

Description

Recent advances in 3D scanning technology have enabled the deployment of 3D models in various industrial applications like digital twins, remote inspection and reverse engineering. Despite their evolving performance, 3D scanners, still introduce noise and artifacts in the acquired dense models. In this work, we propose a fast and robust denoising method for dense 3D scanned industrial models. The proposed approach employs conditional variational autoencoders to effectively filter face normals. Training and inference are performed in a sliding patch setup reducing the size of the required training data and execution times. We conducted extensive evaluation studies using 3D scanned and CAD models. The results verify plausible denoising outcomes, demonstrating similar or higher reconstruction accuracy, compared to other state-of-the-art approaches. Specifically, for 3D models with more than 1e4 faces, the presented pipeline is twice as fast as methods with equivalent reconstruction error.

Requirements

  1. Tensorflow
  2. Numpy
  3. Pickle
  4. Matplotlib
  5. SKLearn
  6. Scipy
  7. Gzip
  8. Random

Overview

Pipeline of the proposed approach and training scheme of the CVAE Pipeline

Training

Running the code

Train with groundtruth data

 python fastMeshDenoising_CVAE_Train.py

Inference

python fastMeshDenoising_CVAE_Test_On_The_Fly.py

The generated model can be found in

./results/Comparison/Denoised/CVAE/

Notes

Repository with full code and data

https://gitlab.com/vvr/snousias/fast-mesh-denoising

Structure

./data/
./images/
./meshes/
./results/
./sessions/
commonReadModelV3.py
CVAE.py
CVAEplot.py
CVAEutils.py
fastMeshDenoising*.py

Select a model from a list of models

Models in .obj format are found in./meshes/

trainModels = [
           'block',
           'casting',
           'coverrear_Lp',
           'ccylinder',
           'eight',
           'joint',
           'part-Lp',
           'cad',
           'fandisk',
           'chinese-lion',
           'sculpt',
           'rockerarm',
           'smooth-feature',
           'trim-star',
           'gear',
           'boy01-scanned',
           'boy02-scanned',
           'pyramid-scanned',
           'girl-scanned',
           'cone-scanned',
           'sharp-sphere',
           'leg',
           'screwdriver',
           'carter100K',
           'pulley',
           'pulley-defects'
           ]

Training set

Training set comprises of the first eight models in fastMeshDenoising_Config_Train.py

trainSet=range(0, 8)

###Testing model Testing model is defined by flag "selectedModel" in fastMeshDenoising_CVAE_Test_On_The_Fly.py

selectedModel = 10

Citation info

Citation

S. Nousias, G. Arvanitis, A. Lalos, and K. Moustakas, “Fast mesh denoising with data driven normal filtering using deep variational autoencoders,” IEEE Trans. Ind. Informatics, pp. 1–1, 2020.

Bibtex

@article{Nousias2020,
    author = {Nousias, Stavros and Arvanitis, Gerasimos and Lalos, Aris and Moustakas, Konstantinos},
    doi = {10.1109/TII.2020.3000491},
    issn = {1551-3203},
    journal = {IEEE Transactions on Industrial Informatics},
    pages = {1--1},
    title = {{Fast mesh denoising with data driven normal filtering using deep variational autoencoders}},
    url = {https://ieeexplore.ieee.org/document/9110709/},
    year = {2020}
    }
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022