Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Overview

Fast mesh denoising with data driven normal filtering using deep variational autoencoders

This is an implementation for the paper entitled "Fast mesh denoising with data driven normal filtering using deep variational autoencoders" published in IEEE Transactions on Industrial Informatics 10.1109/TII.2020.3000491

https://ieeexplore.ieee.org/document/9110709

Description

Recent advances in 3D scanning technology have enabled the deployment of 3D models in various industrial applications like digital twins, remote inspection and reverse engineering. Despite their evolving performance, 3D scanners, still introduce noise and artifacts in the acquired dense models. In this work, we propose a fast and robust denoising method for dense 3D scanned industrial models. The proposed approach employs conditional variational autoencoders to effectively filter face normals. Training and inference are performed in a sliding patch setup reducing the size of the required training data and execution times. We conducted extensive evaluation studies using 3D scanned and CAD models. The results verify plausible denoising outcomes, demonstrating similar or higher reconstruction accuracy, compared to other state-of-the-art approaches. Specifically, for 3D models with more than 1e4 faces, the presented pipeline is twice as fast as methods with equivalent reconstruction error.

Requirements

  1. Tensorflow
  2. Numpy
  3. Pickle
  4. Matplotlib
  5. SKLearn
  6. Scipy
  7. Gzip
  8. Random

Overview

Pipeline of the proposed approach and training scheme of the CVAE Pipeline

Training

Running the code

Train with groundtruth data

 python fastMeshDenoising_CVAE_Train.py

Inference

python fastMeshDenoising_CVAE_Test_On_The_Fly.py

The generated model can be found in

./results/Comparison/Denoised/CVAE/

Notes

Repository with full code and data

https://gitlab.com/vvr/snousias/fast-mesh-denoising

Structure

./data/
./images/
./meshes/
./results/
./sessions/
commonReadModelV3.py
CVAE.py
CVAEplot.py
CVAEutils.py
fastMeshDenoising*.py

Select a model from a list of models

Models in .obj format are found in./meshes/

trainModels = [
           'block',
           'casting',
           'coverrear_Lp',
           'ccylinder',
           'eight',
           'joint',
           'part-Lp',
           'cad',
           'fandisk',
           'chinese-lion',
           'sculpt',
           'rockerarm',
           'smooth-feature',
           'trim-star',
           'gear',
           'boy01-scanned',
           'boy02-scanned',
           'pyramid-scanned',
           'girl-scanned',
           'cone-scanned',
           'sharp-sphere',
           'leg',
           'screwdriver',
           'carter100K',
           'pulley',
           'pulley-defects'
           ]

Training set

Training set comprises of the first eight models in fastMeshDenoising_Config_Train.py

trainSet=range(0, 8)

###Testing model Testing model is defined by flag "selectedModel" in fastMeshDenoising_CVAE_Test_On_The_Fly.py

selectedModel = 10

Citation info

Citation

S. Nousias, G. Arvanitis, A. Lalos, and K. Moustakas, “Fast mesh denoising with data driven normal filtering using deep variational autoencoders,” IEEE Trans. Ind. Informatics, pp. 1–1, 2020.

Bibtex

@article{Nousias2020,
    author = {Nousias, Stavros and Arvanitis, Gerasimos and Lalos, Aris and Moustakas, Konstantinos},
    doi = {10.1109/TII.2020.3000491},
    issn = {1551-3203},
    journal = {IEEE Transactions on Industrial Informatics},
    pages = {1--1},
    title = {{Fast mesh denoising with data driven normal filtering using deep variational autoencoders}},
    url = {https://ieeexplore.ieee.org/document/9110709/},
    year = {2020}
    }
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022