pix2pix in tensorflow.js

Overview

pix2pix in tensorflow.js

This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite

See a live demo here: https://yining1023.github.io/pix2pix_tensorflowjs/

Screen_Shot_2018_06_17_at_11_06_09_PM

Try it yourself: Download/clone the repository and run it locally:

git clone https://github.com/yining1023/pix2pix_tensorflowjs.git
cd pix2pix_tensorflowjs
python3 -m http.server

Credits: This project is based on affinelayer's pix2pix-tensorflow. I want to thank christopherhesse, nsthorat, and dsmilkov for their help and suggestions from this Github issue.

How to train a pix2pix(edges2xxx) model from scratch

    1. Prepare the data
    1. Train the model
    1. Test the model
    1. Export the model
    1. Port the model to tensorflow.js
    1. Create an interactive interface in the browser

1. Prepare the data

  • 1.1 Scrape images from google search
  • 1.2 Remove the background of the images
  • 1.3 Resize all images into 256x256 px
  • 1.4 Detect edges of all images
  • 1.5 Combine input images and target images
  • 1.6 Split all combined images into two folders: train and val

Before we start, check out affinelayer's Create your own dataset. I followed his instrustion for steps 1.3, 1.5 and 1.6.

1.1 Scrape images from google search

We can create our own target images. But for this edge2pikachu project, I downloaded a lot of images from google. I'm using this google_image_downloader to download images from google. After downloading the repo above, run -

$ python image_download.py <query> <number of images>

It will download images and save it to the current directory.

1.2 Remove the background of the images

Some images have some background. I'm using grabcut with OpenCV to remove background Check out the script here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/grabcut.py To run the script-

$ python grabcut.py <filename>

It will open an interactive interface, here are some instructions: https://github.com/symao/InteractiveImageSegmentation Here's an example of removing background using grabcut:

Screen Shot 2018 03 13 at 7 03 28 AM

1.3 Resize all images into 256x256 px

Download pix2pix-tensorflow repo. Put all images we got into photos/original folder Run -

$ python tools/process.py --input_dir photos/original --operation resize --output_dir photos/resized

We should be able to see a new folder called resized with all resized images in it.

1.4 Detect edges of all images

The script that I use to detect edges of images from one folder at once is here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/edge-detection.py, we need to change the path of the input images directory on line 31, and create a new empty folder called edges in the same directory. Run -

$ python edge-detection.py

We should be able to see edged-detected images in the edges folder. Here's an example of edge detection: left(original) right(edge detected)

0_batch2 0_batch2_2

1.5 Combine input images and target images

python tools/process.py --input_dir photos/resized --b_dir photos/blank --operation combine --output_dir photos/combined

Here is an example of the combined image: Notice that the size of the combined image is 512x256px. The size is important for training the model successfully.

0_batch2

Read more here: affinelayer's Create your own dataset

1.6 Split all combined images into two folders: train and val

python tools/split.py --dir photos/combined

Read more here: affinelayer's Create your own dataset

I collected 305 images for training and 78 images for testing.

2. Train the model

# train the model
python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

I used the High Power Computer(HPC) at NYU to train the model. You can see more instruction here: https://github.com/cvalenzuela/hpc. You can request GPU and submit a job to HPC, and use tunnels to tranfer large files between the HPC and your computer.

The training takes me 4 hours and 16 mins. After train, there should be a pikachu_train folder with checkpoint in it. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

3. Test the model

# test the model
python pix2pix.py --mode test --output_dir pikachu_test --input_dir pikachu/val --checkpoint pikachu_train

After testing, there should be a new folder called pikachu_test. In the folder, if you open the index.html, you should be able to see something like this in your browser:

Screen_Shot_2018_03_15_at_8_42_48_AM

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

4. Export the model

python pix2pix.py --mode export --output_dir /export/ --checkpoint /pikachu_train/ --which_direction BtoA

It will create a new export folder

5. Port the model to tensorflow.js

I followed affinelayer's instruction here: https://github.com/affinelayer/pix2pix-tensorflow/tree/master/server#exporting

cd server
python tools/export-checkpoint.py --checkpoint ../export --output_file static/models/pikachu_BtoA.pict

We should be able to get a file named pikachu_BtoA.pict, which is 54.4 MB. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

6. Create an interactive interface in the browser

Copy the model we get from step 5 to the models folder.

Owner
Yining Shi
Creative Coding 👩‍💻+ Machine Learning 🤖
Yining Shi
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022