[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

Overview

RoSTER

The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, published in EMNLP 2021.

Requirements

At least one GPU is required to run the code.

Before running, you need to first install the required packages by typing following commands:

$ pip3 install -r requirements.txt

Python 3.6 or above is strongly recommended; using older python versions might lead to package incompatibility issues.

Reproducing the Results

The three datasets used in the paper can be found under the data directory. We provide three bash scripts run_conll.sh, run_onto.sh and run_wikigold.sh for running the model on the three datasets.

Note: Our model does not use any ground truth training/valid/test set labels but only distant labels; we provide the ground truth label files only for completeness and evaluation.

The training bash scripts assume you use one GPU for training (a GPU with around 20GB memory would be sufficient). If your GPUs have smaller memory sizes, try increasing gradient_accumulation_steps or using more GPUs (by setting the CUDA_VISIBLE_DEVICES environment variable). However, the train_batch_size should be always kept as 32.

Command Line Arguments

The meanings of the command line arguments will be displayed upon typing

python src/train.py -h

The following arguments are important and need to be set carefully:

  • train_batch_size: The effective training batch size after gradient accumulation. Usually 32 is good for different datasets.
  • gradient_accumulation_steps: Increase this value if your GPU cannot hold the training batch size (while keeping train_batch_size unchanged).
  • eval_batch_size: This argument only affects the speed of the algorithm; use as large evaluation batch size as your GPUs can hold.
  • max_seq_length: This argument controls the maximum length of sequence fed into the model (longer sequences will be truncated). Ideally, max_seq_length should be set to the length of the longest document (max_seq_length cannot be larger than 512 under RoBERTa architecture), but using larger max_seq_length also consumes more GPU memory, resulting in smaller batch size and longer training time. Therefore, you can trade model accuracy for faster training by reducing max_seq_length.
  • noise_train_epochs, ensemble_train_epochs, self_train_epochs: They control how many epochs to train the model for noise-robust training, ensemble model trianing and self-training, respectively. Their default values will be a good starting point for most datasets, but you may increase them if your dataset is small (e.g., Wikigold dataset) and decrease them if your dataset is large (e.g., OntoNotes dataset).
  • q, tau: Hyperparameters used for noise-robust training. Their default values will be a good starting point for most datasets, but you may use higher values if your dataset is more noisy and use lower values if your dataset is cleaner.
  • noise_train_update_interval, self_train_update_interval: They control how often to update training label weights in noise-robust training and compute soft labels in soft-training, respectively. Their default values will be a good starting point for most datasets, but you may use smaller values (more frequent updates) if your dataset is small (e.g., Wikigold dataset).

Other arguments can be kept as their default values.

Running on New Datasets

To execute the code on a new dataset, you need to

  1. Create a directory named your_dataset under data.
  2. Prepare a training corpus train_text.txt (one sequence per line; words separated by whitespace) and the corresponding distant label train_label_dist.txt (one sequence per line; labels separated by whitespace) under your_dataset for training the NER model.
  3. Prepare an entity type file types.txt under your_dataset (each line contains one entity type; no need to include O class; no need to prepend I-/B- to type names). The entity type names need to be consistant with those in train_label_dist.txt.
  4. (Optional) You can choose to provide a test corpus test_text.txt (one sequence per line) with ground truth labels test_label_true.txt (one sequence per line; labels separated by whitespace). If the test corpus is provided and the command line argument do_eval is turned on, the code will display evaluation results on the test set during training, which is useful for tuning hyperparameters and monitoring the training progress.
  5. Run the code with appropriate command line arguments (I recommend creating a new bash script by referring to the three example scripts).
  6. The final trained classification model will be saved as final_model.pt under the output directory specified by the command line argument output_dir.

You can always refer to the example datasets when preparing your own datasets.

Citations

Please cite the following paper if you find the code helpful for your research.

@inproceedings{meng2021distantly,
  title={Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training},
  author={Meng, Yu and Zhang, Yunyi and Huang, Jiaxin and Wang, Xuan and Zhang, Yu and Ji, Heng and Han, Jiawei},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  year={2021},
}
Owner
Yu Meng
Ph.D. student, Text Mining
Yu Meng
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022