[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

Overview

RoSTER

The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, published in EMNLP 2021.

Requirements

At least one GPU is required to run the code.

Before running, you need to first install the required packages by typing following commands:

$ pip3 install -r requirements.txt

Python 3.6 or above is strongly recommended; using older python versions might lead to package incompatibility issues.

Reproducing the Results

The three datasets used in the paper can be found under the data directory. We provide three bash scripts run_conll.sh, run_onto.sh and run_wikigold.sh for running the model on the three datasets.

Note: Our model does not use any ground truth training/valid/test set labels but only distant labels; we provide the ground truth label files only for completeness and evaluation.

The training bash scripts assume you use one GPU for training (a GPU with around 20GB memory would be sufficient). If your GPUs have smaller memory sizes, try increasing gradient_accumulation_steps or using more GPUs (by setting the CUDA_VISIBLE_DEVICES environment variable). However, the train_batch_size should be always kept as 32.

Command Line Arguments

The meanings of the command line arguments will be displayed upon typing

python src/train.py -h

The following arguments are important and need to be set carefully:

  • train_batch_size: The effective training batch size after gradient accumulation. Usually 32 is good for different datasets.
  • gradient_accumulation_steps: Increase this value if your GPU cannot hold the training batch size (while keeping train_batch_size unchanged).
  • eval_batch_size: This argument only affects the speed of the algorithm; use as large evaluation batch size as your GPUs can hold.
  • max_seq_length: This argument controls the maximum length of sequence fed into the model (longer sequences will be truncated). Ideally, max_seq_length should be set to the length of the longest document (max_seq_length cannot be larger than 512 under RoBERTa architecture), but using larger max_seq_length also consumes more GPU memory, resulting in smaller batch size and longer training time. Therefore, you can trade model accuracy for faster training by reducing max_seq_length.
  • noise_train_epochs, ensemble_train_epochs, self_train_epochs: They control how many epochs to train the model for noise-robust training, ensemble model trianing and self-training, respectively. Their default values will be a good starting point for most datasets, but you may increase them if your dataset is small (e.g., Wikigold dataset) and decrease them if your dataset is large (e.g., OntoNotes dataset).
  • q, tau: Hyperparameters used for noise-robust training. Their default values will be a good starting point for most datasets, but you may use higher values if your dataset is more noisy and use lower values if your dataset is cleaner.
  • noise_train_update_interval, self_train_update_interval: They control how often to update training label weights in noise-robust training and compute soft labels in soft-training, respectively. Their default values will be a good starting point for most datasets, but you may use smaller values (more frequent updates) if your dataset is small (e.g., Wikigold dataset).

Other arguments can be kept as their default values.

Running on New Datasets

To execute the code on a new dataset, you need to

  1. Create a directory named your_dataset under data.
  2. Prepare a training corpus train_text.txt (one sequence per line; words separated by whitespace) and the corresponding distant label train_label_dist.txt (one sequence per line; labels separated by whitespace) under your_dataset for training the NER model.
  3. Prepare an entity type file types.txt under your_dataset (each line contains one entity type; no need to include O class; no need to prepend I-/B- to type names). The entity type names need to be consistant with those in train_label_dist.txt.
  4. (Optional) You can choose to provide a test corpus test_text.txt (one sequence per line) with ground truth labels test_label_true.txt (one sequence per line; labels separated by whitespace). If the test corpus is provided and the command line argument do_eval is turned on, the code will display evaluation results on the test set during training, which is useful for tuning hyperparameters and monitoring the training progress.
  5. Run the code with appropriate command line arguments (I recommend creating a new bash script by referring to the three example scripts).
  6. The final trained classification model will be saved as final_model.pt under the output directory specified by the command line argument output_dir.

You can always refer to the example datasets when preparing your own datasets.

Citations

Please cite the following paper if you find the code helpful for your research.

@inproceedings{meng2021distantly,
  title={Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training},
  author={Meng, Yu and Zhang, Yunyi and Huang, Jiaxin and Wang, Xuan and Zhang, Yu and Ji, Heng and Han, Jiawei},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  year={2021},
}
Owner
Yu Meng
Ph.D. student, Text Mining
Yu Meng
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022