MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Overview

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Introduction

The 3D LiDAR place recognition aims to estimate a coarse localization in a previously seen environment based on a single scan from a rotating 3D LiDAR sensor. The existing solutions to this problem include hand-crafted point cloud descriptors (e.g., ScanContext, M2DP, LiDAR IRIS) and deep learning-based solutions (e.g., PointNetVLAD, PCAN, LPD-Net, DAGC, MinkLoc3D), which are often only evaluated on accumulated 2D scans from the Oxford RobotCat dataset. We introduce MinkLoc3D-SI, a sparse convolution-based solution that utilizes spherical coordinates of 3D points and processes the intensity of the 3D LiDAR measurements, improving the performance when a single 3D LiDAR scan is used. Our method integrates the improvements typical for hand-crafted descriptors (like ScanContext) with the most efficient 3D sparse convolutions (MinkLoc3D). Our experiments show improved results on single scans from 3D LiDARs (USyd Campus dataset) and great generalization ability (KITTI dataset). Using intensity information on accumulated 2D scans (RobotCar Intensity dataset) improves the performance, even though spherical representation doesn’t produce a noticeable improvement. As a result, MinkLoc3D-SI is suited for single scans obtained from a 3D LiDAR, making it applicable in autonomous vehicles.

Fig1

Citation

Paper details will be uploaded after acceptance. This work is an extension of Jacek Komorowski's MinkLoc3D.

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.7 and MinkowskiEngine 0.5.0 on Ubuntu 18.04 with CUDA 11.0.

The following Python packages are required:

  • PyTorch (version 1.7)
  • MinkowskiEngine (version 0.5.0)
  • pytorch_metric_learning (version 0.9.94 or above)
  • numba
  • tensorboard
  • pandas
  • psutil
  • bitarray

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/.../.../MinkLoc3D-SI

Datasets

Preprocessed University of Sydney Campus dataset (USyd) and Oxford RobotCar dataset with intensity channel (IntensityOxford) available here. Extract the dataset folders on the same directory as the project code, so that you have three folders there: 1) IntensityOxford/ 2) MinkLoc3D-SI/ and 3) USyd/.

The pickle files used for positive/negative examples assignment are compatible with the ones introduced in PointNetVLAD and can be generated using the scripts in generating_queries/ folder. The benchmark datasets (Oxford and In-house) introduced in PointNetVLAD can also be used following the instructions in PointNetVLAD.

Before the network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud.

cd generating_queries/ 

# Generate training tuples for the USyd Dataset
python generate_training_tuples_usyd.py

# Generate evaluation tuples for the USyd Dataset
python generate_test_sets_usyd.py

# Generate training tuples for the IntensityOxford Dataset
python generate_training_tuples_intensityOxford.py

# Generate evaluation tuples for the IntensityOxford Dataset
python generate_test_sets_intensityOxford.py

Training

To train MinkLoc3D-SI network, prepare the data as described above. Edit the configuration file (config/config_usyd.txt or config/config_intensityOxford.txt):

  • num_points - number of points in the point cloud. Points are randomly subsampled or zero-padding is applied during loading, if there number of points is too big/small
  • max_distance - maximum used distance from the sensor, points further than max_distance are removed
  • dataset_name - USyd / IntensityOxford / Oxford
  • dataset_folder - path to the dataset folder
  • batch_size_limit parameter depending on available GPU memory. In our experiments with 10GB of GPU RAM in the case of USyd (23k points) the limit was set to 84, for IntensityOxford (4096 points) the limit was 256.

Edit the model configuration file (models/minkloc_config.txt):

  • version - MinkLoc3D / MinkLoc3D-I / MinkLoc3D-S / MinkLoc3D-SI
  • mink_quantization_size - desired quantization (IntensityOxford and Oxford coordinates are normalized [-1, 1], so the quantization parameters need to be adjusted accordingly!):
    • MinkLoc3D/3D-I: qx,qy,qz units: [m, m, m]
    • MinkLoc3D-S/3D-SI qr,qtheta,qphi units: [m, deg, deg]

To train the network, run:

cd training

# To train the desired model on the USyd Dataset
python train.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt

Evaluation

Pre-trained MinkLoc3D-SI trained on USyd is available in the weights folder. To evaluate run the following command:

cd eval

# To evaluate the model trained on the USyd Dataset
python evaluate.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt --weights ../weights/MinkLoc3D-SI-USyd.pth

License

Our code is released under the MIT License (see LICENSE file for details).

References

  1. J. Komorowski, "MinkLoc3D: Point Cloud Based Large-Scale Place Recognition", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2021)
  2. M. A. Uy and G. H. Lee, "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022