MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Overview

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Introduction

The 3D LiDAR place recognition aims to estimate a coarse localization in a previously seen environment based on a single scan from a rotating 3D LiDAR sensor. The existing solutions to this problem include hand-crafted point cloud descriptors (e.g., ScanContext, M2DP, LiDAR IRIS) and deep learning-based solutions (e.g., PointNetVLAD, PCAN, LPD-Net, DAGC, MinkLoc3D), which are often only evaluated on accumulated 2D scans from the Oxford RobotCat dataset. We introduce MinkLoc3D-SI, a sparse convolution-based solution that utilizes spherical coordinates of 3D points and processes the intensity of the 3D LiDAR measurements, improving the performance when a single 3D LiDAR scan is used. Our method integrates the improvements typical for hand-crafted descriptors (like ScanContext) with the most efficient 3D sparse convolutions (MinkLoc3D). Our experiments show improved results on single scans from 3D LiDARs (USyd Campus dataset) and great generalization ability (KITTI dataset). Using intensity information on accumulated 2D scans (RobotCar Intensity dataset) improves the performance, even though spherical representation doesn’t produce a noticeable improvement. As a result, MinkLoc3D-SI is suited for single scans obtained from a 3D LiDAR, making it applicable in autonomous vehicles.

Fig1

Citation

Paper details will be uploaded after acceptance. This work is an extension of Jacek Komorowski's MinkLoc3D.

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.7 and MinkowskiEngine 0.5.0 on Ubuntu 18.04 with CUDA 11.0.

The following Python packages are required:

  • PyTorch (version 1.7)
  • MinkowskiEngine (version 0.5.0)
  • pytorch_metric_learning (version 0.9.94 or above)
  • numba
  • tensorboard
  • pandas
  • psutil
  • bitarray

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/.../.../MinkLoc3D-SI

Datasets

Preprocessed University of Sydney Campus dataset (USyd) and Oxford RobotCar dataset with intensity channel (IntensityOxford) available here. Extract the dataset folders on the same directory as the project code, so that you have three folders there: 1) IntensityOxford/ 2) MinkLoc3D-SI/ and 3) USyd/.

The pickle files used for positive/negative examples assignment are compatible with the ones introduced in PointNetVLAD and can be generated using the scripts in generating_queries/ folder. The benchmark datasets (Oxford and In-house) introduced in PointNetVLAD can also be used following the instructions in PointNetVLAD.

Before the network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud.

cd generating_queries/ 

# Generate training tuples for the USyd Dataset
python generate_training_tuples_usyd.py

# Generate evaluation tuples for the USyd Dataset
python generate_test_sets_usyd.py

# Generate training tuples for the IntensityOxford Dataset
python generate_training_tuples_intensityOxford.py

# Generate evaluation tuples for the IntensityOxford Dataset
python generate_test_sets_intensityOxford.py

Training

To train MinkLoc3D-SI network, prepare the data as described above. Edit the configuration file (config/config_usyd.txt or config/config_intensityOxford.txt):

  • num_points - number of points in the point cloud. Points are randomly subsampled or zero-padding is applied during loading, if there number of points is too big/small
  • max_distance - maximum used distance from the sensor, points further than max_distance are removed
  • dataset_name - USyd / IntensityOxford / Oxford
  • dataset_folder - path to the dataset folder
  • batch_size_limit parameter depending on available GPU memory. In our experiments with 10GB of GPU RAM in the case of USyd (23k points) the limit was set to 84, for IntensityOxford (4096 points) the limit was 256.

Edit the model configuration file (models/minkloc_config.txt):

  • version - MinkLoc3D / MinkLoc3D-I / MinkLoc3D-S / MinkLoc3D-SI
  • mink_quantization_size - desired quantization (IntensityOxford and Oxford coordinates are normalized [-1, 1], so the quantization parameters need to be adjusted accordingly!):
    • MinkLoc3D/3D-I: qx,qy,qz units: [m, m, m]
    • MinkLoc3D-S/3D-SI qr,qtheta,qphi units: [m, deg, deg]

To train the network, run:

cd training

# To train the desired model on the USyd Dataset
python train.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt

Evaluation

Pre-trained MinkLoc3D-SI trained on USyd is available in the weights folder. To evaluate run the following command:

cd eval

# To evaluate the model trained on the USyd Dataset
python evaluate.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt --weights ../weights/MinkLoc3D-SI-USyd.pth

License

Our code is released under the MIT License (see LICENSE file for details).

References

  1. J. Komorowski, "MinkLoc3D: Point Cloud Based Large-Scale Place Recognition", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2021)
  2. M. A. Uy and G. H. Lee, "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023