HyDiff: Hybrid Differential Software Analysis

Related tags

Deep Learninghydiff
Overview

DOI

HyDiff: Hybrid Differential Software Analysis

This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential Software Analysis accepted for the technical track at ICSE'2020. A pre-print of the paper is available here.

Authors: Yannic Noller, Corina S. Pasareanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.

The repository includes:

A pre-built version of HyDiff is also available as Docker image:

docker pull yannicnoller/hydiff
docker run -it --rm yannicnoller/hydiff

Tool

HyDiff's technical framework is built on top of Badger, DifFuzz, and the Symbolic PathFinder. We provide a complete snapshot of all tools and our extensions.

Requirements

  • Git, Ant, Build-Essentials, Gradle
  • Java JDK = 1.8
  • Python3, Numpy Package
  • recommended: Ubuntu 18.04.1 LTS

Folder Structure

The folder tool contains 2 subfolders: fuzzing and symbolicexecution, representing the both components of HyDiff.

fuzzing

  • afl-differential: The fuzzing component is built on top of DifFuzz and KelinciWCA (the fuzzing part of Badger). Both use AFL as the underlying fuzzing engine. In order to make it easy for the users, we provide our complete modified AFL variant in this folder. Our modifications are based on afl-2.52b.

  • kelinci-differential: Kelinci leverages a server-client architecture to make AFL applicable to Java applications, please refer to the Kelinci poster-paper for more details. We modified it to make usable in a general differential analysis. It includes an interface program to connect the Kelinci server to the AFL fuzzer and the instrumentor project, which is used to instrument the Java bytecode. The instrumentation handles the coverage reporting and the collection of our differential metrics. The Kelinci server handles requests from AFL to execute a mutated input on the application.

symbolicexecution

  • jpf-core: Our symbolic execution is built on top of Symbolic PathFinder (SPF), which is an extension of Java PathFinder (JPF), which makes it necessary to include the core implementation of JPF.

  • jpf-symbc-differential: In order to make SPF applicable to a differential analysis, we modified in several locations and added the ability to perform some sort of shadow symbolic execution (cf. Complete Shadow Symbolic Execution with Java PathFinder). This folder includes the modified SPF project.

  • badger-differential: HyDiff performs a hybrid analysis by running fuzzing and symbolic execution in parallel. This concept is based on Badger, which provides the technical basis for our implementation. This folder includes the modified Badger project, which enables the differential hybrid analysis, incl. the differential dynamic symbolic execution.

How to install the tool and run our evaluation

Be aware that the instructions have been tested for Unix systems only.

  1. First you need to build the tool and the subjects. We provide a script setup.sh to simply build everything. Note: the script may override an existing site.properties file, which is required for JPF/SPF.

  2. Test the installation: the best way to test the installation is to execute the evaluation of our example program (cf. Listing 1 in our paper). You can execute the script run_example.sh. As it is, it will run each analysis (just differential fuzzing, just differential symbolic execution, and the hybrid analysis) once. The values presented in our paper in Section 2.2 are averaged over 30 runs. In order to perform 30 runs each, you can easily adapt the script, but for some first test runs you can leave it as it is. The script should produce three folders:

    • experiments/subjects/example/fuzzer-out-1: results for differential fuzzing
    • experiments/subjects/example/symexe-out-1: results for differential symbolic execution
    • experiments/subjects/example/hydiff-out-1: results for HyDiff (hybrid combination) It will also produce three csv files with the summarized statistics for each experiment:
    • experiments/subjects/example/fuzzer-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/symexe-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/hydiff-out-results-n=1-t=600-s=30-d=0.csv
  3. After finishing the building process and testing the installation, you can use the provided run scripts (experiments/scripts) to replay HyDiff's evaluation or to perform your own differential analysis. HyDiff's evaluation contains three types of differential analysis. For each of them you will find a separate run script:

In the beginning of each run script you can define the experiment parameters:

  • number_of_runs: N, the number of evaluation runs for each subject (30 for all experiments)
  • time_bound: T, the time bound for the analysis (regression: 600sec, side-channel: 1800sec, and dnn: 3600sec)
  • step_size_eval: S, the step size for the evaluation (30sec for all experiments)
  • [time_symexe_first: D, the delay with which fuzzing gets started after symexe for the DNN subjects] (only DNN)

Each run script first executes differential fuzzing, then differential symbolic execution and then the hybrid analysis. Please adapt our scripts to perform your own analysis.

For each subject, analysis_type, and experiment repetition i the scripts will produce folders like: experiments/subjects/ / -out- , and will summarize the experiments in csv files like: experiments/subjects/ / -out-results-n= -t= -s= -d= .csv .

Complete Evaluation Reproduction

In order to reproduce our evaluation completely, you need to run the three mentioned run scripts. They include the generation of all statistics. Be aware that the mere runtime of all analysis parts is more than 53 days because of the high runtimes and number of repetitions. So it might be worthwhile to run it only for some specific subjects or to run the analysis on different machines in parallel or to modify the runtime or to reduce the number of repetitions. Feel free to adjust the script or reuse it for your own purpose.

Statistics

As mentioned earlier, the statistics will be automatically generated by our run script, which execute the python scripts from the scripts folder to aggregate the several experiment runs. They will generate csv files with the information about the average result values.

For the regression analysis and the DNN analysis we use the scripts:

For the side-channel analysis we use the scripts:

All csv files for our experiments are included in experiments/results.

Feel free to adapt these evaluation scripts for your own purpose.

Maintainers

  • Yannic Noller (yannic.noller at acm.org)

License

This project is licensed under the MIT License - see the LICENSE file for details

You might also like...
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

Differential rendering based motion capture blender project.
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Releases(v1.0.0)
  • v1.0.0(Jan 26, 2020)

    First official release for HyDiff. We added all parts of our tool and all evaluation subjects to support the reproduction of our results. This release is submitted to the ICSE 2020 Artifact Evaluation.

    Source code(tar.gz)
    Source code(zip)
Owner
Yannic Noller
Yannic Noller
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022