Practical Single-Image Super-Resolution Using Look-Up Table

Related tags

Deep LearningSR-LUT
Overview

Practical Single-Image Super-Resolution Using Look-Up Table

[Paper]

Dependency

  • Python 3.6
  • PyTorch
  • glob
  • numpy
  • pillow
  • tqdm
  • tensorboardx

1. Training deep SR network

  1. Move into a directory.
cd ./1_Train_deep_model
  1. Prepare DIV2K training images into ./train.
  • HR images should be placed as ./train/DIV2K_train_HR/*.png.
  • LR images should be placed as ./train/DIV2K_train_LR_bicubic/X4/*.png.
  1. Set5 HR/LR validation png images are already included in ./val, or you can use other images.

  2. You may modify user parameters in L22 in ./Train_Model_S.py.

  3. Run.

python Train_Model_S.py
  1. Checkpoints will be saved in ./checkpoint/S.
  • Training log will be generated in ./log/S.

2. Transferring to LUT

  1. Move into a directory.
cd ./2_Transfer_to_LUT
  1. Modify user parameters in L9 in ./Transfer_Model_S.py.
  • Specify a saved checkpoint in the step 1, or you can use attached ./Model_S.pth.
  1. Run.
python Transfer_Model_S.py
  1. The resulting LUT will be saved like ./Model_S_x4_4bit_int8.npy.

3. Testing using LUT

  1. Move into a directory.
cd ./3_Test_using_LUT
  1. Modify user parameters in L17 in ./Test_Model_S.py.
  • Specify the generated LUT in the step 2, or use attached LUTs (npy files).
  1. Set5 HR/LR test images are already included in ./test, or you can use other images.

  2. Run.

python Test_Model_S.py      # Ours-S
python Test_Model_F.py      # Ours-F
python Test_Model_V.py      # Ours-V
  1. Resulting images will be saved in ./output_S_x4_4bit/*.png.

  2. We can reproduce the results of Table 6 in the paper, by modifying the variable SAMPLING_INTERVAL in L19 in Test_Model_S.py to range 3-8.

4. Testing on a smartphone

  1. Download SR-LUT.apk and install it.

  2. You can test Set14 images or other images.

SR-LUT Android app demo

BibTeX

@InProceedings{jo2021practical,
   author = {Jo, Younghyun and Kim, Seon Joo},
   title = {Practical Single-Image Super-Resolution Using Look-Up Table},
   booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month = {June},
   year = {2021}
}
Owner
Younghyun Jo
Younghyun Jo
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
SegNet including indices pooling for Semantic Segmentation with tensorflow and keras

SegNet SegNet is a model of semantic segmentation based on Fully Comvolutional Network. This repository contains the implementation of learning and te

Yuta Kamikawa 172 Dec 23, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023