Practical Single-Image Super-Resolution Using Look-Up Table

Related tags

Deep LearningSR-LUT
Overview

Practical Single-Image Super-Resolution Using Look-Up Table

[Paper]

Dependency

  • Python 3.6
  • PyTorch
  • glob
  • numpy
  • pillow
  • tqdm
  • tensorboardx

1. Training deep SR network

  1. Move into a directory.
cd ./1_Train_deep_model
  1. Prepare DIV2K training images into ./train.
  • HR images should be placed as ./train/DIV2K_train_HR/*.png.
  • LR images should be placed as ./train/DIV2K_train_LR_bicubic/X4/*.png.
  1. Set5 HR/LR validation png images are already included in ./val, or you can use other images.

  2. You may modify user parameters in L22 in ./Train_Model_S.py.

  3. Run.

python Train_Model_S.py
  1. Checkpoints will be saved in ./checkpoint/S.
  • Training log will be generated in ./log/S.

2. Transferring to LUT

  1. Move into a directory.
cd ./2_Transfer_to_LUT
  1. Modify user parameters in L9 in ./Transfer_Model_S.py.
  • Specify a saved checkpoint in the step 1, or you can use attached ./Model_S.pth.
  1. Run.
python Transfer_Model_S.py
  1. The resulting LUT will be saved like ./Model_S_x4_4bit_int8.npy.

3. Testing using LUT

  1. Move into a directory.
cd ./3_Test_using_LUT
  1. Modify user parameters in L17 in ./Test_Model_S.py.
  • Specify the generated LUT in the step 2, or use attached LUTs (npy files).
  1. Set5 HR/LR test images are already included in ./test, or you can use other images.

  2. Run.

python Test_Model_S.py      # Ours-S
python Test_Model_F.py      # Ours-F
python Test_Model_V.py      # Ours-V
  1. Resulting images will be saved in ./output_S_x4_4bit/*.png.

  2. We can reproduce the results of Table 6 in the paper, by modifying the variable SAMPLING_INTERVAL in L19 in Test_Model_S.py to range 3-8.

4. Testing on a smartphone

  1. Download SR-LUT.apk and install it.

  2. You can test Set14 images or other images.

SR-LUT Android app demo

BibTeX

@InProceedings{jo2021practical,
   author = {Jo, Younghyun and Kim, Seon Joo},
   title = {Practical Single-Image Super-Resolution Using Look-Up Table},
   booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month = {June},
   year = {2021}
}
Owner
Younghyun Jo
Younghyun Jo
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022