Practical Single-Image Super-Resolution Using Look-Up Table

Related tags

Deep LearningSR-LUT
Overview

Practical Single-Image Super-Resolution Using Look-Up Table

[Paper]

Dependency

  • Python 3.6
  • PyTorch
  • glob
  • numpy
  • pillow
  • tqdm
  • tensorboardx

1. Training deep SR network

  1. Move into a directory.
cd ./1_Train_deep_model
  1. Prepare DIV2K training images into ./train.
  • HR images should be placed as ./train/DIV2K_train_HR/*.png.
  • LR images should be placed as ./train/DIV2K_train_LR_bicubic/X4/*.png.
  1. Set5 HR/LR validation png images are already included in ./val, or you can use other images.

  2. You may modify user parameters in L22 in ./Train_Model_S.py.

  3. Run.

python Train_Model_S.py
  1. Checkpoints will be saved in ./checkpoint/S.
  • Training log will be generated in ./log/S.

2. Transferring to LUT

  1. Move into a directory.
cd ./2_Transfer_to_LUT
  1. Modify user parameters in L9 in ./Transfer_Model_S.py.
  • Specify a saved checkpoint in the step 1, or you can use attached ./Model_S.pth.
  1. Run.
python Transfer_Model_S.py
  1. The resulting LUT will be saved like ./Model_S_x4_4bit_int8.npy.

3. Testing using LUT

  1. Move into a directory.
cd ./3_Test_using_LUT
  1. Modify user parameters in L17 in ./Test_Model_S.py.
  • Specify the generated LUT in the step 2, or use attached LUTs (npy files).
  1. Set5 HR/LR test images are already included in ./test, or you can use other images.

  2. Run.

python Test_Model_S.py      # Ours-S
python Test_Model_F.py      # Ours-F
python Test_Model_V.py      # Ours-V
  1. Resulting images will be saved in ./output_S_x4_4bit/*.png.

  2. We can reproduce the results of Table 6 in the paper, by modifying the variable SAMPLING_INTERVAL in L19 in Test_Model_S.py to range 3-8.

4. Testing on a smartphone

  1. Download SR-LUT.apk and install it.

  2. You can test Set14 images or other images.

SR-LUT Android app demo

BibTeX

@InProceedings{jo2021practical,
   author = {Jo, Younghyun and Kim, Seon Joo},
   title = {Practical Single-Image Super-Resolution Using Look-Up Table},
   booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month = {June},
   year = {2021}
}
Owner
Younghyun Jo
Younghyun Jo
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022