PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

Related tags

Deep Learningdro-sfm
Overview

DRO: Deep Recurrent Optimizer for Structure-from-Motion

This is the official PyTorch implementation code for DRO-sfm. For technical details, please refer to:

DRO: Deep Recurrent Optimizer for Structure-from-Motion
Xiaodong Gu*, Weihao Yuan*, Zuozhuo Dai, Chengzhou Tang, Siyu Zhu, Ping Tan
[Paper]

Bibtex

If you find this code useful in your research, please cite:

@article{gu2021dro,
  title={DRO: Deep Recurrent Optimizer for Structure-from-Motion},
  author={Gu, Xiaodong and Yuan, Weihao and Dai, Zuozhuo and Tang, Chengzhou and Zhu, Siyu and Tan, Ping},
  journal={arXiv preprint arXiv:2103.13201},
  year={2021}
}

Contents

  1. Install
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Install

  • We recommend using nvidia-docker2 to have a reproducible environment.
git clone https://github.com/aliyun/dro-sfm.git
cd dro-sfm
sudo make docker-build
sudo make docker-start-interactive

You can also download the built docker directly from dro-sfm-image.tar

docker load < dro-sfm-image.tar
  • If you do not use docker, you could create an environment following the steps in the Dockerfile.
# Environment variables
export PYTORCH_VERSION=1.4.0
export TORCHVISION_VERSION=0.5.0
export NCCL_VERSION=2.4.8-1+cuda10.1
export HOROVOD_VERSION=65de4c961d1e5ad2828f2f6c4329072834f27661
# Install NCCL
sudo apt-get install libnccl2=${NCCL_VERSION} libnccl-dev=${NCCL_VERSION}

# Install Open MPI
mkdir /tmp/openmpi && \
    cd /tmp/openmpi && \
    wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
    tar zxf openmpi-4.0.0.tar.gz && \
    cd openmpi-4.0.0 && \
    ./configure --enable-orterun-prefix-by-default && \
    make -j $(nproc) all && \
    make install && \
    ldconfig && \
    rm -rf /tmp/openmpi

# Install PyTorch
pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION} && ldconfig

# Install horovod (for distributed training)
sudo ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir git+https://github.com/horovod/horovod.git@${HOROVOD_VERSION} && sudo ldconfig

To verify that the environment is setup correctly, you can run a simple overfitting test:

# download a tiny subset of KITTI
cd dro-sfm
curl -s https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/dro-sfm/datasets/KITTI_tiny.tar | tar xv -C /data/datasets/kitti/
# in docker
./run.sh "python scripts/train.py configs/overfit_kitti_mf_gt.yaml" log.txt

Datasets

Datasets are assumed to be downloaded in /data/datasets/ (can be a symbolic link).

KITTI

The KITTI (raw) dataset used in our experiments can be downloaded from the KITTI website. For convenience, you can download data from packnet or here

Tiny KITTI

For simple tests, you can download a "tiny" version of KITTI:

Scannet

The Scannet (raw) dataset used in our experiments can be downloaded from the Scannet website. For convenience, you can download data from here

DeMoN

Download DeMoN.

bash download_traindata.sh
python ./dataset/preparation/preparedata_train.py
bash download_testdata.sh
python ./dataset/preparation/preparedata_test.py

Training

Any training, including fine-tuning, can be done by passing either a .yaml config file or a .ckpt model checkpoint to scripts/train.py:

# kitti, checkpoints will saved in ./results/mdoel/
./run.sh 'python scripts/train.py  configs/train_kitti_mf_gt.yaml' logs/kitti_sup.txt
./run.sh 'python scripts/train.py  configs/train_kitti_mf_selfsup.yaml' logs/kitti_selfsup.txt 

# scannet
./run.sh 'python scripts/train.py  configs/train_scannet_mf_gt_view3.yaml' logs/scannet_sup.txt
./run.sh 'python scripts/train.py  configs/train_scannet_mf_selfsup_view3.yaml' logs/scannet_selfsup.txt
./run.sh 'python scripts/train.py  configs/train_scannet_mf_gt_view5.yaml' logs/scannet_sup_view5.txt

# demon
./run.sh 'python scripts/train.py  configs/train_demon_mf_gt.yaml' logs/demon_sup.txt

Evaluation

python scripts/eval.py --checkpoint <checkpoint.ckpt> [--config <config.yaml>]
# example:kitti, results will be saved in results/depth/
python scripts/eval.py --checkpoint ckpt/outdoor_kitti.ckpt --config configs/train_kitti_mf_gt.yaml

You can also directly run inference on a single image or video:

# video or folder
# indoor-scannet 
python scripts/infer_video.py --checkpoint ckpt/indoor_sacnnet.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type scannet --ply_mode 
 # indoor-general
python scripts/infer_video.py --checkpoint ckpt/indoor_sacnnet.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type general --ply_mode

# outdoor
python scripts/infer_video.py --checkpoint ckpt/outdoor_kitti.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type kitti --ply_mode 

# image
python scripts/infer.py --checkpoint <checkpoint.ckpt> --input <image or folder> --output <image or folder>

Models

Model Abs.Rel. Sqr.Rel RMSE RMSElog a1 a2 a3 SILog L1_inv rot_ang t_ang t_cm
Kitti_sup 0.045 0.193 2.570 0.080 0.971 0.994 0.998 0.079 0.003 - - -
Kitti_selfsup 0.053 0.346 3.037 0.102 0.962 0.990 0.996 0.101 0.004 - - -
scannet_sup 0.053 0.017 0.165 0.080 0.967 0.994 0.998 0.078 0.033 0.472 9.297 1.160
scannet_sup(view5) 0.047 0.014 0.151 0.072 0.976 0.996 0.999 0.071 0.030 0.456 8.502 1.163
scannet_selfsup 0.143 0.345 0.656 0.274 0.896 0.954 0.969 0.272 0.106 0.609 10.779 1.393

Acknowledgements

Thanks to Toyota Research Institute for opening source of excellent work packnet-sfm. Thanks to Zachary Teed for opening source of his excellent work RAFT.

Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022