BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

Overview

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue.

This repo is the official implementation of BigDetection. It is based on mmdetection and CBNetV2.

Introduction

We construct a new large-scale benchmark termed BigDetection. Our goal is to simply leverage the training data from existing datasets (LVIS, OpenImages and Object365) with carefully designed principles, and curate a larger dataset for improved detector pre-training. BigDetection dataset has 600 object categories and contains 3.4M training images with 36M object bounding boxes. We show some important statistics of BigDetection in the following figure.

Left: Number of images per category of BigDetection. Right: Number of instances in different object sizes.

Results and Models

BigDetection Validation

We show the evaluation results on BigDetection Validation. We hope BigDetection could serve as a new challenging benchmark for evaluating next-level object detection methods.

Method mAP (bigdet val) Links
YOLOv3 9.7 model/config
Deformable DETR 13.1 model/config
Faster R-CNN (C4)* 18.9 model
Faster R-CNN (FPN)* 19.4 model
CenterNet2* 23.1 model
Cascade R-CNN* 24.1 model
CBNetV2-Swin-Base 35.1 model/config

COCO Validation

We show the finetuning performance on COCO minival/test-dev. Results show that BigDetection pre-training provides significant benefits for different detector architectures. We achieve 59.8 mAP on COCO test-dev with a single model.

Method mAP (coco minival/test-dev) Links
YOLOv3 30.5/- config
Deformable DETR 39.9/- model/config
Faster R-CNN (C4)* 38.8/- model
Faster R-CNN (FPN)* 40.5/- model
CenterNet2* 45.3/- model
Cascade R-CNN* 45.1/- model
CBNetV2-Swin-Base 59.1/59.5 model/config
CBNetV2-Swin-Base (TTA) 59.5/59.8 config

Data Efficiency

We followed STAC and SoftTeacher to evaluate on COCO for different partial annotation settings.

Method mAP (1%) mAP (2%) mAP (5%) mAP (10%)
Baseline 9.8 14.3 21.2 26.2
STAC 14.0 18.3 24.4 28.6
SoftTeacher (ICCV 21) 20.5 26.5 30.7 34.0
Ours 25.3 28.1 31.9 34.1
model model model model

Notes

  • The models following * are implemented on another detection codebase Detectron2. Here we provide the pretrained checkpoints. The results can be reproduced following the installation of CenterNet2 codebase.
  • Most of models are trained for 8X schedule on BigDetection.
  • Most of pretrained models are finetuned for 1X schedule on COCO.
  • TTA denotes test time augmentation.
  • Pre-trained models of Swin Transformer can be downloaded from Swin Transformer for ImageNet Classification.

Getting Started

Requirements

  • Ubuntu 16.04
  • CUDA 10.2

Installation

# Create conda environment
conda create -n bigdet python=3.7 -y
conda activate bigdet

# Install Pytorch
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch

# Install mmcv
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

# Clone and install
git clone https://github.com/amazon-research/bigdetection.git
cd bigdetection
pip install -r requirements/build.txt
pip install -v -e .

# Install Apex (optinal)
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data Preparation

Our BigDetection involves 3 datasets and train/val data can be downloaded from their official website (Objects365, OpenImages v6, LVIS v1.0). All datasets should be placed under $bigdetection/data/ as below. The synsets (total 600 class names) of BigDetection dataset can be downloaded here: bigdetection_synsets. Contact us with [email protected] to get access to our pre-processed annotation files.

bigdetection/data
└── BigDetection
    ├── annotations
    │   ├── bigdet_obj_train.json
    │   ├── bigdet_oid_train.json
    │   ├── bigdet_lvis_train.json
    │   ├── bigdet_val.json
    │   └── cas_weights.json
    ├── train
    │   ├── Objects365
    │   ├── OpenImages
    │   └── LVIS
    └── val

Training

To train a detector with pre-trained models, run:

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options load_from=<PRETRAIN_MODEL>

Pre-training

To pre-train a CBNetV2 with a Swin-Base backbone on BigDetection using 8 GPUs, run: (PRETRAIN_MODEL should be pre-trained checkpoint of Base-Swin-Transformer: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

To pre-train a Deformable-DETR with a ResNet-50 backbone on BigDetection, run:

tools/dist_train.sh configs/BigDetection/deformable_detr/deformable_detr_r50_16x2_8x_bigdet.py 8

Fine-tuning

To fine-tune a BigDetection pre-trained CBNetV2 (with Swin-Base backbone) on COCO, run: (PRETRAIN_MODEL should be BigDetection pre-trained checkpoint of CBNetV2: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

Inference

To evaluate a detector with pre-trained checkpoints, run:

tools/dist_test.sh <CONFIG_FILE> <CHECKPOINT> <GPU_NUM> --eval bbox

BigDetection evaluation

To evaluate pre-trained CBNetV2 on BigDetection validation, run:

tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py \
    <BIGDET_PRETRAIN_CHECKPOINT> 8 --eval bbox

COCO evaluation

To evaluate COCO-finetuned CBNetV2 on COCO validation, run:

# without test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

# with test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco_tta.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

Other configuration based on Detectron2 can be found at detectron2-probject.

Citation

If you use our dataset or pretrained models in your research, please kindly consider to cite the following paper.

@article{bigdetection2022,
  title={BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training},
  author={Likun Cai and Zhi Zhang and Yi Zhu and Li Zhang and Mu Li and Xiangyang Xue},
  journal={arXiv preprint arXiv:2203.13249},
  year={2022}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Acknowledgement

We thank the authors releasing mmdetection and CBNetv2 for object detection research community.

Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022