BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

Overview

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue.

This repo is the official implementation of BigDetection. It is based on mmdetection and CBNetV2.

Introduction

We construct a new large-scale benchmark termed BigDetection. Our goal is to simply leverage the training data from existing datasets (LVIS, OpenImages and Object365) with carefully designed principles, and curate a larger dataset for improved detector pre-training. BigDetection dataset has 600 object categories and contains 3.4M training images with 36M object bounding boxes. We show some important statistics of BigDetection in the following figure.

Left: Number of images per category of BigDetection. Right: Number of instances in different object sizes.

Results and Models

BigDetection Validation

We show the evaluation results on BigDetection Validation. We hope BigDetection could serve as a new challenging benchmark for evaluating next-level object detection methods.

Method mAP (bigdet val) Links
YOLOv3 9.7 model/config
Deformable DETR 13.1 model/config
Faster R-CNN (C4)* 18.9 model
Faster R-CNN (FPN)* 19.4 model
CenterNet2* 23.1 model
Cascade R-CNN* 24.1 model
CBNetV2-Swin-Base 35.1 model/config

COCO Validation

We show the finetuning performance on COCO minival/test-dev. Results show that BigDetection pre-training provides significant benefits for different detector architectures. We achieve 59.8 mAP on COCO test-dev with a single model.

Method mAP (coco minival/test-dev) Links
YOLOv3 30.5/- config
Deformable DETR 39.9/- model/config
Faster R-CNN (C4)* 38.8/- model
Faster R-CNN (FPN)* 40.5/- model
CenterNet2* 45.3/- model
Cascade R-CNN* 45.1/- model
CBNetV2-Swin-Base 59.1/59.5 model/config
CBNetV2-Swin-Base (TTA) 59.5/59.8 config

Data Efficiency

We followed STAC and SoftTeacher to evaluate on COCO for different partial annotation settings.

Method mAP (1%) mAP (2%) mAP (5%) mAP (10%)
Baseline 9.8 14.3 21.2 26.2
STAC 14.0 18.3 24.4 28.6
SoftTeacher (ICCV 21) 20.5 26.5 30.7 34.0
Ours 25.3 28.1 31.9 34.1
model model model model

Notes

  • The models following * are implemented on another detection codebase Detectron2. Here we provide the pretrained checkpoints. The results can be reproduced following the installation of CenterNet2 codebase.
  • Most of models are trained for 8X schedule on BigDetection.
  • Most of pretrained models are finetuned for 1X schedule on COCO.
  • TTA denotes test time augmentation.
  • Pre-trained models of Swin Transformer can be downloaded from Swin Transformer for ImageNet Classification.

Getting Started

Requirements

  • Ubuntu 16.04
  • CUDA 10.2

Installation

# Create conda environment
conda create -n bigdet python=3.7 -y
conda activate bigdet

# Install Pytorch
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch

# Install mmcv
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

# Clone and install
git clone https://github.com/amazon-research/bigdetection.git
cd bigdetection
pip install -r requirements/build.txt
pip install -v -e .

# Install Apex (optinal)
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data Preparation

Our BigDetection involves 3 datasets and train/val data can be downloaded from their official website (Objects365, OpenImages v6, LVIS v1.0). All datasets should be placed under $bigdetection/data/ as below. The synsets (total 600 class names) of BigDetection dataset can be downloaded here: bigdetection_synsets. Contact us with [email protected] to get access to our pre-processed annotation files.

bigdetection/data
└── BigDetection
    ├── annotations
    │   ├── bigdet_obj_train.json
    │   ├── bigdet_oid_train.json
    │   ├── bigdet_lvis_train.json
    │   ├── bigdet_val.json
    │   └── cas_weights.json
    ├── train
    │   ├── Objects365
    │   ├── OpenImages
    │   └── LVIS
    └── val

Training

To train a detector with pre-trained models, run:

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options load_from=<PRETRAIN_MODEL>

Pre-training

To pre-train a CBNetV2 with a Swin-Base backbone on BigDetection using 8 GPUs, run: (PRETRAIN_MODEL should be pre-trained checkpoint of Base-Swin-Transformer: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

To pre-train a Deformable-DETR with a ResNet-50 backbone on BigDetection, run:

tools/dist_train.sh configs/BigDetection/deformable_detr/deformable_detr_r50_16x2_8x_bigdet.py 8

Fine-tuning

To fine-tune a BigDetection pre-trained CBNetV2 (with Swin-Base backbone) on COCO, run: (PRETRAIN_MODEL should be BigDetection pre-trained checkpoint of CBNetV2: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

Inference

To evaluate a detector with pre-trained checkpoints, run:

tools/dist_test.sh <CONFIG_FILE> <CHECKPOINT> <GPU_NUM> --eval bbox

BigDetection evaluation

To evaluate pre-trained CBNetV2 on BigDetection validation, run:

tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py \
    <BIGDET_PRETRAIN_CHECKPOINT> 8 --eval bbox

COCO evaluation

To evaluate COCO-finetuned CBNetV2 on COCO validation, run:

# without test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

# with test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco_tta.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

Other configuration based on Detectron2 can be found at detectron2-probject.

Citation

If you use our dataset or pretrained models in your research, please kindly consider to cite the following paper.

@article{bigdetection2022,
  title={BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training},
  author={Likun Cai and Zhi Zhang and Yi Zhu and Li Zhang and Mu Li and Xiangyang Xue},
  journal={arXiv preprint arXiv:2203.13249},
  year={2022}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Acknowledgement

We thank the authors releasing mmdetection and CBNetv2 for object detection research community.

Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Syed Waqas Zamir 906 Dec 30, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022