YouRefIt: Embodied Reference Understanding with Language and Gesture

Overview

YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture

by Yixin Chen, Qing Li, Deqian Kong, Yik Lun Kei, Tao Gao, Yixin Zhu, Song-Chun Zhu and Siyuan Huang

The IEEE International Conference on Computer Vision (ICCV), 2021

Introduction

We study the machine's understanding of embodied reference: One agent uses both language and gesture to refer to an object to another agent in a shared physical environment. To tackle this problem, we introduce YouRefIt, a new crowd-sourced, real-world dataset of embodied reference.

For more details, please refer to our paper.

Checklist

  • Image ERU
  • Video ERU

Installation

The code was tested with the following environment: Ubuntu 18.04/20.04, python 3.7/3.8, pytorch 1.9.1. Run

    git clone https://github.com/yixchen/YouRefIt_ERU
    pip install -r requirements.txt

Dataset

Download the YouRefIt dataset from Dataset Request Page and put under ./ln_data

Model weights

  • Yolov3: download the pretrained model and place the file in ./saved_models by
    sh saved_models/yolov3_weights.sh
    
  • More pretrained models are availble Google drive, and should also be placed in ./saved_models.

Make sure to put the files in the following structure:

|-- ROOT
|	|-- ln_data
|		|-- yourefit
|			|-- images
|			|-- paf
|			|-- saliency
|	|-- saved_modeks
|		|-- final_model_full.tar
|		|-- final_resc.tar

Training

Train the model, run the code under main folder.

python train.py --data_root ./ln_data/ --dataset yourefit --gpu gpu_id 

Evaluation

Evaluate the model, run the code under main folder. Using flag --test to access test mode.

python train.py --data_root ./ln_data/ --dataset yourefit --gpu gpu_id \
 --resume saved_models/model.pth.tar \
 --test

Evaluate Image ERU on our released model

Evaluate our full model with PAF and saliency feature, run

python train.py --data_root ./ln_data/ --dataset yourefit  --gpu gpu_id \
 --resume saved_models/final_model_full.tar --use_paf --use_sal --large --test

Evaluate baseline model that only takes images as input, run

python train.py --data_root ./ln_data/ --dataset yourefit  --gpu gpu_id \
 --resume saved_models/final_resc.tar --large --test

Evalute the inference results on test set on different IOU levels by changing the path accordingly,

 python evaluate_results.py

Citation

@inProceedings{chen2021yourefit,
 title={YouRefIt: Embodied Reference Understanding with Language and Gesture},
 author = {Chen, Yixin and Li, Qing and Kong, Deqian and Kei, Yik Lun and Zhu, Song-Chun and Gao, Tao and Zhu, Yixin and Huang, Siyuan},
 booktitle={The IEEE International Conference on Computer Vision (ICCV),
 year={2021}
 }    

Acknowledgement

Our code is built on ReSC and we thank the authors for their hard work.

Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
cisip-FIRe - Fast Image Retrieval

Fast Image Retrieval (FIRe) is an open source image retrieval project release by Center of Image and Signal Processing Lab (CISiP Lab), Universiti Malaya. This project implements most of the major bi

CISiP Lab 39 Nov 25, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022