Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

Overview

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models".

  • "test_suite_cases.csv" contains the full test suite (3,728 cases in 29 functional tests).
  • "test_suite_annotations.csv" provides detailed annotation outcomes for each case in the test suite.
  • The corresponding "all_" files cover all 3,901 cases that were initially generated, from which 173 were excluded from the test suite due to fewer than four out five annotators agreeing with our gold standard label.
  • "template_placeholders.csv" contains the tokens that the placeholders in the case templates are replaced with for generating the test cases.

"test_suite_cases.csv" and "all_cases.csv"

functionality The shorthand for the functionality tested by the test case.

case_id The unique ID of the test case (assigned to each of the 3,901 cases we initially generated)

test_case The text of the test case.

label_gold The gold standard label (hateful/non-hateful) of the test case. All test cases within a given functionality have the same gold standard label.

target_ident Where applicable, the protected group targeted or referenced by the test case. We cover seven protected groups in the test suite: women, trans people, gay people, black people, disabled people, Muslims and immigrants.

direction For hateful cases, the binary secondary label indicating whether they are directed at an individual as part of a protected group or aimed at the group in general.

focus_words Where applicable, the key word or phrase in a given test case (e.g. "cut their throats").

focus_lemma Where applicable, the corresponding lemma (e.g. "cut sb. throat").

ref_case_id For hateful cases, where applicable, the ID of the simpler hateful case which was perturbed to generate them. For non-hateful cases, where applicable, the ID of the hateful case which is contrasted.

ref_templ_id The equivalent, but for template IDs.

templ_id The unique ID of the template from which the test case was generated (assigned to each of the 866 cases and templates from which we generated the 3,901 initial cases).


"test_suite_annotations.csv" and "all_annotations.csv"

functionality, case_id, templ_id, test_case, label_gold See above.

label_[1:10] The label provided for the test case by a given annotator. We recruited and trained a team of ten annotators. Each test case was annotated by exactly five annotators.

count_label_h The number of annotators who labeled a given test case as hateful.

count_label_nh The number of annotators who labeled a given test case as non-hateful.

label_annot_maj The majority label.

Owner
Paul Röttger
DPhil Student in Social Data Science at the University of Oxford. Interested in NLP and hate speech research.
Paul Röttger
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022