[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Related tags

Deep Learninggrabnel
Overview

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021

overall-pipeline

This repository contains the official implementation of GRABNEL, a Bayesian optimisation-based adversarial agent to conduct adversarial attacks on graph classification models. GRABNEL currently supports various topological attacks, such as via edge flipping (incl. both addition or deletion), node injection and edge swapping. We also include implementations of a number of baseline methods including random search, genetic algorithm [1] and a gradient-based white-box attacker (available on some victim model choices). We also implement a number of victim models, namely:

  • Graph convolution networks (GCN) [2]
  • Graph isomorphism networks (GIN) [3]
  • ChebyGIN [4] (only for MNIST-75sp task)
  • Graph U-Net [5]
  • S2V (only for the ER Graph task in [1])

For details please take a look at our paper: abstract / pdf.

The code repository also contains instructions for the TU datasets [6] in the DGL framework, as well as the MNIST-75sp dataset in [4]. For the Twitter dataset we used for node injection tasks, we are not authorised to redistribute the dataset and you have to ask for permission from the authors of [7] directly.

If you find our work to be useful for your research, please consider citing us:

Wan, Xingchen, Henry Kenlay, Binxin Ru, Arno Blaas, Michael A. Osborne, and Xiaowen Dong. "Adversarial Attacks on Graph Classifiers via Bayesian Optimisation." In Thirty-Fifth Conference on Neural Information Processing Systems. 2021.

Or in bibtex:

@inproceedings{wan2021adversarial,
  title={Adversarial Attacks on Graph Classifiers via Bayesian Optimisation},
  author={Wan, Xingchen and Kenlay, Henry and Ru, Binxin and Blaas, Arno and Osborne, Michael and Dong, Xiaowen},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Instructions for use

  1. Install the required packages in requirements.txt

For TU Dataset(s):

  1. Train a selected architecture (GCN/GIN). Taking an example of GCN training on the PROTEINS dataset. By default DGL will download the requested dataset under ~/.dgl directory. If it throws an error, you might have to manually download the dataset and add to the appropriate directory.
python3 train_model.py --dataset PROTEINS --model gcn --seed $YOUR_SEED 

This by default deposits the trained victim model under src/output/models and the training log under src/output/training_logs.

  1. Evaluate the victim model on a separate test set. Run
python3 evaluate_model.py --dataset PROTEINS --seed $YOUR_SEED  --model gcn

This by default will create evaluation logs under src/output/evaluation_logs.

  1. Run the attack algorithm.
cd scripts && python3 run_bo_tu.py --dataset PROTEINS --save_path $YOUR_SAVE_PATH --model_path $YOUR_MODEL_PATH --seed $YOUR_SEED --model gcn

With no method specified, the script runs GRABNEL by default. You may use the -m to specify if, for example, you'd like to run one of the baseline methods mentioned above instead.

For the MNIST-75sp task For MNIST-75sp, we use the pre-trained model released by the authors of [4] as the victim model, so there is no need to train a victim model separately (unless you wish to).

  1. Generate the MNIST-75sp dataset. Here we use an adapted script from [4], but added a converter to ensure that the dataset generated complies with the rest of our code base (DGL-compliant, etc). You need to download the MNIST dataset beforehand (or use the torchvision download facility. Either is fine)
cd data && python3 build_mnist.py -D mnist -d $YOUR_DATA_PATH -o $YOUR_SAVE_PATH  

The output should be a pickle file mnist_75sp.p. Place it under $PROJECT_ROOT/src/data/

  1. Download the pretrained model from https://github.com/bknyaz/graph_attention_pool. The pretrained checkpointed model we use is checkpoint_mnist-75sp_139255_epoch30_seed0000111.pth.tar. Deposit the model under src/output/models

  2. Run attack algorithm.

cd scripts && python3 run_bo_image_classification.py --dataset mnist

References

[1] Dai, Hanjun, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. "Adversarial attack on graph structured data." In International conference on machine learning, pp. 1115-1124. PMLR, 2018.

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

[3] Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).

[4] Knyazev, Boris, Graham W. Taylor, and Mohamed R. Amer. "Understanding attention and generalization in graph neural networks." NeurIPS (2019).

[5] Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." In international conference on machine learning, pp. 2083-2092. PMLR, 2019.

[6] Morris, Christopher, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann. "Tudataset: A collection of benchmark datasets for learning with graphs." arXiv preprint arXiv:2007.08663 (2020).

[7] Vosoughi, Soroush, Deb Roy, and Sinan Aral. "The spread of true and false news online." Science 359, no. 6380 (2018): 1146-1151.

Acknowledgements

The repository builds, directly or indirectly, on multiple open-sourced code bases available online. The authors would like to express their gratitudes towards the maintainers of the following repos:

  1. https://github.com/Hanjun-Dai/graph_adversarial_attack
  2. https://github.com/DSE-MSU/DeepRobust
  3. https://github.com/HongyangGao/Graph-U-Nets
  4. https://github.com/xingchenwan/nasbowl
  5. The Deep graph library team
  6. The grakel team (https://ysig.github.io/GraKeL/0.1a8/)
Owner
Xingchen Wan
PhD Student in Machine Learning @ University of Oxford
Xingchen Wan
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022