An 16kHz implementation of HiFi-GAN for soft-vc.

Overview

HiFi-GAN

An 16kHz implementation of HiFi-GAN for soft-vc.

Relevant links:

Example Usage

import torch
import numpy as np

# Load checkpoint
hifigan = torch.hub.load("bshall/hifigan:main", "hifigan_hubert_soft").cuda()
# Load mel-spectrogram
mel = torch.from_numpy(np.load("path/to/mel")).unsqueeze(0).cuda()
# Generate
wav, sr = hifigan.generate(mel)

Train

Step 1: Download and extract the LJ-Speech dataset

Step 2: Resample the audio to 16kHz:

usage: resample.py [-h] [--sample-rate SAMPLE_RATE] in-dir out-dir

Resample an audio dataset.

positional arguments:
  in-dir                path to the dataset directory
  out-dir               path to the output directory

optional arguments:
  -h, --help            show this help message and exit
  --sample-rate SAMPLE_RATE
                        target sample rate (default 16kHz)

Step 3: Download the dataset splits and move them into the root of the dataset directory. After steps 2 and 3 your dataset directory should look like this:

LJSpeech-1.1
│   test.txt
│   train.txt
│   validation.txt
├───mels
└───wavs

Note: the mels directory is optional. If you want to fine-tune HiFi-GAN the mels directory should contain ground-truth aligned spectrograms from an acoustic model.

Step 4: Train HiFi-GAN:

usage: train.py [-h] [--resume RESUME] [--finetune] dataset-dir checkpoint-dir

Train or finetune HiFi-GAN.

positional arguments:
  dataset-dir      path to the preprocessed data directory
  checkpoint-dir   path to the checkpoint directory

optional arguments:
  -h, --help       show this help message and exit
  --resume RESUME  path to the checkpoint to resume from
  --finetune       whether to finetune (note that a resume path must be given)

Generate

To generate using the trained HiFi-GAN models, see Example Usage or use the generate.py script:

usage: generate.py [-h] [--model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}] in-dir out-dir

Generate audio for a directory of mel-spectrogams using HiFi-GAN.

positional arguments:
  in-dir                path to directory containing the mel-spectrograms
  out-dir               path to output directory

optional arguments:
  -h, --help            show this help message and exit
  --model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}
                        available models

Acknowledgements

This repo is based heavily on https://github.com/jik876/hifi-gan.

You might also like...
 Fast Soft Color Segmentation
Fast Soft Color Segmentation

Fast Soft Color Segmentation

Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Comments
  • is pretrained weight of discriminator of base model available?

    is pretrained weight of discriminator of base model available?

    Thanks for nice work. @bshall

    I'm trying to train hifigan now, but it takes so long training it from scratch using other dataset.

    If discriminator of base model is also available, I could start finetuning based on that vocoder. it seems that you released only generator. Could you also release discriminator weights?

    opened by seastar105 3
  • NaN during training when using own dataset

    NaN during training when using own dataset

    While fine-tuning works as expected, doing regular training with a dataset that isn't LJSpeech would eventually cause a NaN loss at some point. The culprit appears to be the following line, which causes a division by zero if wav happens to contain perfect silence:

    https://github.com/bshall/hifigan/blob/374a4569eae5437e2c80d27790ff6fede9fc1c46/hifigan/dataset.py#L106

    I'm not sure what the best solution for this would be, as a quick fix I simply clipped the divisor so it can't reach zero:

    wav = flip * gain * wav / max([wav.abs().max(), 0.001])
    
    opened by cjay42 0
  • How to use this Vocoder with your Tacotron?

    How to use this Vocoder with your Tacotron?

    Thank you for your work. I used your Tacotron in your Universal Vocoding.The quality of the speech is excellent. However, the inference speed is slow. for that reason, I would like to use this hifigan as a vocoder. But Tacotron's n_mel is 80, while hifigan's n_mel is 128. How to use hifigan with Tacotron?

    opened by gheyret 0
Owner
Benjamin van Niekerk
PhD student at Stellenbosch University. Interested in speech and audio technology.
Benjamin van Niekerk
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
TyXe: Pyro-based BNNs for Pytorch users

TyXe: Pyro-based BNNs for Pytorch users TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveragi

87 Jan 03, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022