[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Overview

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Pytorch 1.7.0 cvxpy 1.1.11 tensorflow 1.14

In this work, we propose a framework HijackGAN, which enables non-linear latent space traversal and gain high-level controls, e.g., attributes, head poses, and landmarks, over unconditional image generation GANs in a fully black-box setting. It opens up the possibility of reusing GANs while raising concerns about unintended usage.

[Paper (CVPR 2021)][Project Page]

Prerequisites

Install required packages

pip install -r requirements.txt

Download pretrained GANs

Download the CelebAHQ pretrained weights of ProgressiveGAN [paper][code] and StyleGAN [paper][code], and then put those weights in ./models/pretrain. For example,

pretrain/
├── Pretrained_Models_Should_Be_Placed_Here
├── karras2018iclr-celebahq-1024x1024.pkl
├── karras2019stylegan-celebahq-1024x1024.pkl
├── pggan_celebahq_z.pt
├── stylegan_celebahq_z.pt
├── stylegan_headpose_z_dp.pt
└── stylegan_landmark_z.pt

Quick Start

Specify number of images to edit, a model to generate images, some parameters for editting.

LATENT_CODE_NUM=1
python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_eyeglasses \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0 \
    --task attribute \
    --method ours

Usage

Important: For different given images (initial points), different step size and steps may be considered. In the following examples, we provide the parameters used in our paper. One could adjust them for better performance.

Specify Number of Samples

LATENT_CODE_NUM=1

Unconditional Modification

python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_smile_editing \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0\
    --task attribute

Conditional Modification

python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_smile_editing \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0\
    --condition\
    -i codes/pggan_cond/age.npy
    --task attribute

Head pose

Pitch

python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task head_pose \
    --method ours \
    --step_size 0.01 \
    --steps 2000 \
    --attr_index 1\
    --condition\
    --direction -1 \
    --demo

Yaw

python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task head_pose \
    --method ours \
    --step_size 0.1 \
    --steps 200 \
    --attr_index 0\
    --condition\
    --direction 1\
    --demo

Landmarks

Parameters for reference: (attr_index, step_size, steps) (4: 0.005 400) (5: 0.01 100), (6: 0.1 200), (8 0.1 200)

CUDA_VISIBLE_DEVICES=0 python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task landmark \
    --method ours \
    --step_size 0.1 \
    --steps 200 \
    --attr_index 6\
    --condition\
    --direction 1 \
    --demo

Generate Balanced Data

This a templeate showing how we generated balanced data for attribute manipulation (16 attributes in our internal experiments). You can modify it to fit your task better. Please first refer to here and replace YOUR_TASK_MODEL with your own classification model, and then run:

NUM=500000
CUDA_VISIBLE_DEVICES=0 python generate_balanced_data.py -m stylegan_celebahq \
    -o ./generated_data -K ./generated_data/indices.pkl -n "$NUM" -SI 0 --no_generated_imgs

Evaluations

TO-DO

  • Basic usage
  • Prerequisites
  • How to generate data
  • How to evaluate

Acknowledgment

This code is built upon InterfaceGAN

Owner
Hui-Po Wang
Interested in ML/DL/CV domains. A PhD student at CISPA, Germany.
Hui-Po Wang
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023