[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Overview

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Pytorch 1.7.0 cvxpy 1.1.11 tensorflow 1.14

In this work, we propose a framework HijackGAN, which enables non-linear latent space traversal and gain high-level controls, e.g., attributes, head poses, and landmarks, over unconditional image generation GANs in a fully black-box setting. It opens up the possibility of reusing GANs while raising concerns about unintended usage.

[Paper (CVPR 2021)][Project Page]

Prerequisites

Install required packages

pip install -r requirements.txt

Download pretrained GANs

Download the CelebAHQ pretrained weights of ProgressiveGAN [paper][code] and StyleGAN [paper][code], and then put those weights in ./models/pretrain. For example,

pretrain/
├── Pretrained_Models_Should_Be_Placed_Here
├── karras2018iclr-celebahq-1024x1024.pkl
├── karras2019stylegan-celebahq-1024x1024.pkl
├── pggan_celebahq_z.pt
├── stylegan_celebahq_z.pt
├── stylegan_headpose_z_dp.pt
└── stylegan_landmark_z.pt

Quick Start

Specify number of images to edit, a model to generate images, some parameters for editting.

LATENT_CODE_NUM=1
python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_eyeglasses \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0 \
    --task attribute \
    --method ours

Usage

Important: For different given images (initial points), different step size and steps may be considered. In the following examples, we provide the parameters used in our paper. One could adjust them for better performance.

Specify Number of Samples

LATENT_CODE_NUM=1

Unconditional Modification

python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_smile_editing \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0\
    --task attribute

Conditional Modification

python edit.py \
    -m pggan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/stylegan_celebahq_smile_editing \
    --step_size 0.2 \
    --steps 40 \
    --attr_index 0\
    --condition\
    -i codes/pggan_cond/age.npy
    --task attribute

Head pose

Pitch

python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task head_pose \
    --method ours \
    --step_size 0.01 \
    --steps 2000 \
    --attr_index 1\
    --condition\
    --direction -1 \
    --demo

Yaw

python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task head_pose \
    --method ours \
    --step_size 0.1 \
    --steps 200 \
    --attr_index 0\
    --condition\
    --direction 1\
    --demo

Landmarks

Parameters for reference: (attr_index, step_size, steps) (4: 0.005 400) (5: 0.01 100), (6: 0.1 200), (8 0.1 200)

CUDA_VISIBLE_DEVICES=0 python edit.py \
    -m stylegan_celebahq \
    -b boundaries/ \
    -n "$LATENT_CODE_NUM" \
    -o results/ \
    --task landmark \
    --method ours \
    --step_size 0.1 \
    --steps 200 \
    --attr_index 6\
    --condition\
    --direction 1 \
    --demo

Generate Balanced Data

This a templeate showing how we generated balanced data for attribute manipulation (16 attributes in our internal experiments). You can modify it to fit your task better. Please first refer to here and replace YOUR_TASK_MODEL with your own classification model, and then run:

NUM=500000
CUDA_VISIBLE_DEVICES=0 python generate_balanced_data.py -m stylegan_celebahq \
    -o ./generated_data -K ./generated_data/indices.pkl -n "$NUM" -SI 0 --no_generated_imgs

Evaluations

TO-DO

  • Basic usage
  • Prerequisites
  • How to generate data
  • How to evaluate

Acknowledgment

This code is built upon InterfaceGAN

Owner
Hui-Po Wang
Interested in ML/DL/CV domains. A PhD student at CISPA, Germany.
Hui-Po Wang
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021