A robust pointcloud registration pipeline based on correlation.

Related tags

Deep Learningphaser
Overview

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration

Ubuntu 18.04+ROS Melodic: Build Status


Overview

Pointcloud registration using correspondences is inefficient and prone to errors in the many steps of correspondence extraction, description, and matching. Similarly, the most widespread registration methods work only locally, requiring an initial guess already close to the true solution, something unaffordable in real robotic deployments. We propose an algorithm for the registration of partially overlapping pointclouds that operates at the global level and on the raw data, i.e., no initial guess as well as no candidate matches are required. We exploit the properties of Fourier analysis to derive a novel registration pipeline based on the cross-correlation of the phases.

Packages

PHASER is composed of the following packages:

  • phaser_core: The registration core of PHASER. Contains the spherical and spatial correlation.
  • phaser_ros: This is a ROS wrapper to use the PHASER as a registration framework. Hardly used anymore.
  • phaser_common: Exposes common classes, utils and models.
  • phaser_pre: Experimental preprocessing of pointcloud data.
  • phaser_viz: Provides visualization functions.
  • phaser_test_data: Contains example data as PLYs.
  • phaser_share: Provides run and build scripts.

Installation

PHASER requires ROS and some other dependencies to be installed:

Dependencies

  # Some standard requirements
  sudo apt-get install -y doxygen autotools-dev \
     dh-autoreconf libboost-all-dev python-setuptools git g++ cppcheck \
     libgtest-dev python-git pylint \
     python-termcolor liblog4cplus-dev cimg-dev python-wstool \
     python-catkin-tools \

   # Ubuntu 18.04 / ROS Melodic.
   sudo apt-get install -y clang-format-6.0 ros-melodic-pcl-conversions \
     libpcl-dev libnlopt-dev \

Important: Currently, PHASER also requires nvcc for compilation as most-recent experiments deal with performing the FFTs on the GPU.

For the remaining package dependencies, run within the caktin workspace

  wstool init
  wstool merge phaser/dependencies.rosinstall
  wstool update

Building the project:

  catkin build phaser_ros

Optionally one can build an run all unit tests using:

  ./phaser_share/run_build_tests

However, this might take some minutes to finish.

Example

The package phaser_core provides a simple test driver to run PHASER using two pointclouds stored as .ply files. Additionally, run script for the test driver is provided in the phaser_share directory.

The initial alignment of the two pointclouds is as follows: PHASER Input Example

By running

./phaser_share/run_phaser_core_driver

the registered pointcloud is written to disk as registered.ply. You might need to adapt the source and target pointcloud paths. Furthermore, other pointcloud examples can be found in the phaser_test_data/test_clouds/os0/ directory.

In this particular case, the registration is configured to be very fine. Thus, it will take a few seconds to finish: PHASER Registered Example

Development Guidelines

Reference

Our paper is available at
Bernreiter, Lukas, Lionel Ott, Juan Nieto, Roland Siegwart, and Cesar Cadena. "PHASER: A Robust and Correspondence-Free Global Pointcloud Registration." IEEE Robotics and Automation Letters 6, no. 2 (2021): 855-862. [Link] [ArXiv].

BibTex:

@article{bernreiter2021phaser,
  title={PHASER: A Robust and Correspondence-Free Global Pointcloud Registration},
  author={Bernreiter, Lukas and Ott, Lionel and Nieto, Juan and Siegwart, Roland and Cadena, Cesar},
  journal={IEEE Robotics and Automation Letters},
  volume={6},
  number={2},
  pages={855--862},
  year={2021},
  publisher={IEEE}
}
Owner
ETHZ ASL
ETHZ ASL
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022