Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Overview

Parameterized AP Loss

By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai

This is the official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Introduction

TL; DR.

Parameterized AP Loss aims to better align the network training and evaluation in object detection. It builds a unified formula for classification and localization tasks via parameterized functions, where the optimal parameters are searched automatically.

PAPLoss-intro

Introduction.

  • In evaluation of object detectors, Average Precision (AP) captures the performance of localization and classification sub-tasks simultaneously.

  • In training, due to the non-differentiable nature of the AP metric, previous methods adopt separate differentiable losses for the two sub-tasks. Such a mis-alignment issue may well lead to performance degradation.

  • Some existing works seek to design surrogate losses for the AP metric manually, which requires expertise and may still be sub-optimal.

  • In this paper, we propose Parameterized AP Loss, where parameterized functions are introduced to substitute the non-differentiable components in the AP calculation. Different AP approximations are thus represented by a family of parameterized functions in a unified formula. Automatic parameter search algorithm is then employed to search for the optimal parameters. Extensive experiments on the COCO benchmark demonstrate that the proposed Parameterized AP Loss consistently outperforms existing handcrafted losses.

PAPLoss-overview

Main Results with RetinaNet

Model Loss AP config
R50+FPN Focal Loss + L1 37.5 config
R50+FPN Focal Loss + GIoU 39.2 config
R50+FPN AP Loss + L1 35.4 config
R50+FPN aLRP Loss 39.0 config
R50+FPN Parameterized AP Loss 40.5 search config
training config

Main Results with Faster-RCNN

Model Loss AP config
R50+FPN Cross Entropy + L1 39.0 config
R50+FPN Cross Entropy + GIoU 39.1 config
R50+FPN aLRP Loss 40.7 config
R50+FPN AutoLoss-Zero 39.3 -
R50+FPN CSE-AutoLoss-A 40.4 -
R50+FPN Parameterized AP Loss 42.0 search config
training config

Installation

Our implementation is based on MMDetection and aLRPLoss, thanks for their codes!

Requirements

  • Linux or macOS
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+
  • GCC 5+
  • mmcv

Recommended configuration: Python 3.7, PyTorch 1.7, CUDA 10.1.

Install mmdetection with Parameterized AP Loss

a. create a conda virtual environment and activate it.

conda create -n paploss python=3.7 -y
conda activate paploss

b. install pytorch and torchvision following official instructions.

conda install pytorch=1.7.0 torchvision=0.8.0 cudatoolkit=10.1 -c pytorch

c. intall mmcv following official instruction. We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.7.0, you could run:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html

d. clone the repository.

git clone https://github.com/fundamentalvision/Parameterized-AP-Loss.git
cd Parameterized-AP-Loss

e. Install build requirements and then install mmdetection with Parameterized AP Loss. (We install our forked version of pycocotools via the github repo instead of pypi for better compatibility with our repo.)

pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

Usage

Dataset preparation

Please follow the official guide of mmdetection to organize the datasets. Note that we split the original training set into search training and validation sets with this split tool. The recommended data structure is as follows:

Parameterized-AP-Loss
├── mmdet
├── tools
├── configs
└── data
    └── coco
        ├── annotations
        |   ├── search_train2017.json
        |   ├── search_val2017.json
        |   ├── instances_train2017.json
        |   └── instances_val2017.json
        ├── train2017
        ├── val2017
        └── test2017

Searching for Parameterized AP Loss

The search command format is

./tools/dist_search.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for searching for RetinaNet with 8 GPUs is as follows:

./tools/dist_search.sh ./search_configs/cfg_search_retina.py 8

Training models with the provided parameters

After searching, copy the optimal parameters into the provided training config. We have also provided a set of parameters searched by us.

The re-training command format is

./tools/dist_train.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for training RetinaNet with 8 GPUs is as follows:

./tools/dist_train.sh ./configs/paploss/paploss_retinanet_r50_fpn.py 8

License

This project is released under the Apache 2.0 license.

Citing Parameterzied AP Loss

If you find Parameterized AP Loss useful in your research, please consider citing:

@inproceedings{tao2021searching,
  title={Searching Parameterized AP Loss for Object Detection},
  author={Tao, Chenxin and Li, Zizhang and Zhu, Xizhou and Huang, Gao and Liu, Yong and Dai, Jifeng},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022