Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Overview

Parameterized AP Loss

By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai

This is the official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Introduction

TL; DR.

Parameterized AP Loss aims to better align the network training and evaluation in object detection. It builds a unified formula for classification and localization tasks via parameterized functions, where the optimal parameters are searched automatically.

PAPLoss-intro

Introduction.

  • In evaluation of object detectors, Average Precision (AP) captures the performance of localization and classification sub-tasks simultaneously.

  • In training, due to the non-differentiable nature of the AP metric, previous methods adopt separate differentiable losses for the two sub-tasks. Such a mis-alignment issue may well lead to performance degradation.

  • Some existing works seek to design surrogate losses for the AP metric manually, which requires expertise and may still be sub-optimal.

  • In this paper, we propose Parameterized AP Loss, where parameterized functions are introduced to substitute the non-differentiable components in the AP calculation. Different AP approximations are thus represented by a family of parameterized functions in a unified formula. Automatic parameter search algorithm is then employed to search for the optimal parameters. Extensive experiments on the COCO benchmark demonstrate that the proposed Parameterized AP Loss consistently outperforms existing handcrafted losses.

PAPLoss-overview

Main Results with RetinaNet

Model Loss AP config
R50+FPN Focal Loss + L1 37.5 config
R50+FPN Focal Loss + GIoU 39.2 config
R50+FPN AP Loss + L1 35.4 config
R50+FPN aLRP Loss 39.0 config
R50+FPN Parameterized AP Loss 40.5 search config
training config

Main Results with Faster-RCNN

Model Loss AP config
R50+FPN Cross Entropy + L1 39.0 config
R50+FPN Cross Entropy + GIoU 39.1 config
R50+FPN aLRP Loss 40.7 config
R50+FPN AutoLoss-Zero 39.3 -
R50+FPN CSE-AutoLoss-A 40.4 -
R50+FPN Parameterized AP Loss 42.0 search config
training config

Installation

Our implementation is based on MMDetection and aLRPLoss, thanks for their codes!

Requirements

  • Linux or macOS
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+
  • GCC 5+
  • mmcv

Recommended configuration: Python 3.7, PyTorch 1.7, CUDA 10.1.

Install mmdetection with Parameterized AP Loss

a. create a conda virtual environment and activate it.

conda create -n paploss python=3.7 -y
conda activate paploss

b. install pytorch and torchvision following official instructions.

conda install pytorch=1.7.0 torchvision=0.8.0 cudatoolkit=10.1 -c pytorch

c. intall mmcv following official instruction. We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.7.0, you could run:

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.7.0/index.html

d. clone the repository.

git clone https://github.com/fundamentalvision/Parameterized-AP-Loss.git
cd Parameterized-AP-Loss

e. Install build requirements and then install mmdetection with Parameterized AP Loss. (We install our forked version of pycocotools via the github repo instead of pypi for better compatibility with our repo.)

pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

Usage

Dataset preparation

Please follow the official guide of mmdetection to organize the datasets. Note that we split the original training set into search training and validation sets with this split tool. The recommended data structure is as follows:

Parameterized-AP-Loss
├── mmdet
├── tools
├── configs
└── data
    └── coco
        ├── annotations
        |   ├── search_train2017.json
        |   ├── search_val2017.json
        |   ├── instances_train2017.json
        |   └── instances_val2017.json
        ├── train2017
        ├── val2017
        └── test2017

Searching for Parameterized AP Loss

The search command format is

./tools/dist_search.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for searching for RetinaNet with 8 GPUs is as follows:

./tools/dist_search.sh ./search_configs/cfg_search_retina.py 8

Training models with the provided parameters

After searching, copy the optimal parameters into the provided training config. We have also provided a set of parameters searched by us.

The re-training command format is

./tools/dist_train.sh {CONFIG_NAME} {NUM_GPUS}

For example, the command for training RetinaNet with 8 GPUs is as follows:

./tools/dist_train.sh ./configs/paploss/paploss_retinanet_r50_fpn.py 8

License

This project is released under the Apache 2.0 license.

Citing Parameterzied AP Loss

If you find Parameterized AP Loss useful in your research, please consider citing:

@inproceedings{tao2021searching,
  title={Searching Parameterized AP Loss for Object Detection},
  author={Tao, Chenxin and Li, Zizhang and Zhu, Xizhou and Huang, Gao and Liu, Yong and Dai, Jifeng},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023